Answer:
There are two choices for angle Y:
for
,
for
.
Step-by-step explanation:
There are mistakes in the statement, correct form is now described:
<em>In triangle XYZ, measure of angle X = 49°, XY = 18 and YZ = 14. Find the measure of angle Y:</em>
The line segment XY is opposite to angle Z and the line segment YZ is opposite to angle X. We can determine the length of the line segment XZ by the Law of Cosine:
(1)
If we know that
,
and
, then we have the following second order polynomial:
![14^{2} = XZ^{2} + 18^{2} - 2\cdot (18)\cdot XZ\cdot \cos 49^{\circ}](https://tex.z-dn.net/?f=14%5E%7B2%7D%20%3D%20XZ%5E%7B2%7D%20%2B%2018%5E%7B2%7D%20-%202%5Ccdot%20%2818%29%5Ccdot%20XZ%5Ccdot%20%5Ccos%2049%5E%7B%5Ccirc%7D)
(2)
By the Quadratic Formula we have the following result:
![XZ \approx 15.193\,\lor\,XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193%5C%2C%5Clor%5C%2CXZ%20%5Capprox%208.424)
There are two possible triangles, we can determine the value of angle Y for each by the Law of Cosine again:
![XZ^{2} = XY^{2} + YZ^{2} - 2\cdot XY \cdot YZ \cdot \cos Y](https://tex.z-dn.net/?f=XZ%5E%7B2%7D%20%3D%20XY%5E%7B2%7D%20%2B%20YZ%5E%7B2%7D%20-%202%5Ccdot%20XY%20%5Ccdot%20YZ%20%5Ccdot%20%5Ccos%20Y)
![\cos Y = \frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ}](https://tex.z-dn.net/?f=%5Ccos%20Y%20%3D%20%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D)
![Y = \cos ^{-1}\left(\frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ} \right)](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%20%5E%7B-1%7D%5Cleft%28%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D%20%5Cright%29)
1) ![XZ \approx 15.193](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-15.193^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-15.193%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 54.987^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2054.987%5E%7B%5Ccirc%7D)
2) ![XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%208.424)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-8.424^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-8.424%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 27.008^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2027.008%5E%7B%5Ccirc%7D)
There are two choices for angle Y:
for
,
for
.
Answer:
c
Step-by-step explanation:
Answer:
<h3>
B(10, 6)</h3>
Step-by-step explanation:
If P is midpoint of AB and: ![A(0,\,0)\,,\quad P(5,\,3)\,,\quad B(x_B,\,y_B)](https://tex.z-dn.net/?f=A%280%2C%5C%2C0%29%5C%2C%2C%5Cquad%20P%285%2C%5C%2C3%29%5C%2C%2C%5Cquad%20B%28x_B%2C%5C%2Cy_B%29)
then:
![x_P-x_A=x_B - x_P\qquad\quad\ \wedge\qquad y_P-y_A=y_B - y_P\\\\ 5-0=x_B-5\qquad\quad\wedge\qquad 3-0=y_B -3\\\\ x_B=5+5\qquad\qquad\wedge\qquad\ \ y_B=3+3 \\\\ {}\quad x_B=10\qquad\qquad\wedge\qquad\qquad \ y_B=6](https://tex.z-dn.net/?f=x_P-x_A%3Dx_B%20-%20x_P%5Cqquad%5Cquad%5C%20%5Cwedge%5Cqquad%20y_P-y_A%3Dy_B%20-%20y_P%5C%5C%5C%5C%205-0%3Dx_B-5%5Cqquad%5Cquad%5Cwedge%5Cqquad%203-0%3Dy_B%20-3%5C%5C%5C%5C%20x_B%3D5%2B5%5Cqquad%5Cqquad%5Cwedge%5Cqquad%5C%20%5C%20y_B%3D3%2B3%20%5C%5C%5C%5C%20%7B%7D%5Cquad%20x_B%3D10%5Cqquad%5Cqquad%5Cwedge%5Cqquad%5Cqquad%20%5C%20y_B%3D6)
Answer:
See below.
Step-by-step explanation:
The Slope of PQ is (v - z) / (w - x).
The slope of P'Q' =
(v + b) - (z + b)
--------------------- = (v - z) / (w - x)
(w + a - (x + a)
Both lines have a slope that is (v - z)/ (w - x).
So both lines are parallel.
Answer:
<em>x = 6 and y = 25 → (6, 25)</em>
Step-by-step explanation:
Substitute y = 4x + 1 to the equation 2x + y = 37:
2x + (4x + 1) = 37
(2x + 4x) + 1 = 37 <em>subtract 1 from both sides</em>
6x = 36 <em>divide both sides by 6</em>
x = 6
Pyt the value of x to the first equation:
y = 4(6) + 1
y = 24 + 1
y = 25