1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
5

If you guys want I’ll make it 80 points + BRAINLIEST if you help me with my previous question just please please please let me k

now if you can help me ):
Mathematics
1 answer:
lesya [120]3 years ago
8 0

sure dude whats the question?


You might be interested in
Ayuda necesito en el ultimo punto
Sonbull [250]

Answer:

Please refrain from using Spanish in a English brainliest site.

Step-by-step explanation:

8 0
3 years ago
Can anyone help with my algebra 1 homework??
Anni [7]

Answer:

I believe the final answer is x=3

Step-by-step explanation:

when trying to solve equations, always sort things out and prioritize things, that way it's easier to get to the final answer.



x+2x-5=4

3x-5=4 just move the -5 to the other side and make it a positive

3x=9

x+y=4

y=1

3+1=4



3 0
3 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Zoe wants to make a driveway.
-Dominant- [34]
Well the volume of dirt she needs to remove is equal to length*width*height=6.2*4.9*0.225=6.8355

Now let's find how many bags she needs.

To solve for this, simply divide room in bags from total room.
6.8355/0.87=7.857

Thus Zoe has barely enough, but enough bags.
6 0
3 years ago
The function g(n) = n2 − 16n + 69 represents a parabola.
miss Akunina [59]
Hello : 
<span>g(n) = n2 − 16n + 69
       =( n²-16n+64)-64 +69.....(</span><span> completing the square)
</span>g(n) = (n-8)² +5...... (<span>the vertex form)
the vertex is : (8,5)
</span><span>the axis of symmetry is the line : n = 1</span>
5 0
3 years ago
Other questions:
  • -5X +1 92 - 321+13 - 12X<br> Plz I need help
    14·1 answer
  • 965000000000000 in scientific notation
    10·2 answers
  • The following sample was obtained from a population with unknown parameters.
    5·1 answer
  • What is the least common multiple (LCM) of 7 and 8?
    10·1 answer
  • Help giving out 10 points
    6·2 answers
  • Components arriving at a distributor are checked for defects by two different inspectors (each component is checked by both insp
    5·1 answer
  • if ben makes $35.00 per hour and then gets a ten percent raise what is his new salary. Show your work
    15·2 answers
  • 5 4/5 - 1 9/10 hall help
    6·1 answer
  • What is the equation of the line that has a slope of 5 and passes through the point (-4, 10)? * (20 Points)​
    14·1 answer
  • How would you describe the graph of the function in interval 2? Select all that apply.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!