1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
4 years ago
8

Find the inverse Laplace transforms, as a function of x, of the following functions:

Mathematics
1 answer:
inn [45]4 years ago
4 0

Answer:  The required answer is

f(x)=e^x+\cos x+\sin x.

Step-by-step explanation:  We are given to find the inverse Laplace transform of the following function as a function of x :

F(s)=\dfrac{2s^2}{(s-1)(s^2+1)}.

We will be using the following formulas of inverse Laplace transform :

(i)~L^{-1}\{\dfrac{1}{s-a}\}=e^{ax},\\\\\\(ii)~L^{-1}\{\dfrac{s}{s^2+a^2}\}=\cos ax,\\\\\\(iii)~L^{-1}\{\dfrac{1}{s^2+a^2}\}=\dfrac{1}{a}\sin ax.

By partial fractions, we have

\dfrac{s^2}{(s-1)(s^2+1)}=\dfrac{A}{s-1}+\dfrac{Bs+C}{s^2+1},

where A, B and C are constants.

Multiplying both sides of the above equation by the denominator of the left hand side, we get

2s^2=A(s^2+1)+(Bs+C)(s-1).

If s = 1, we get

2\times 1=A(1+1)\\\\\Rightarrow A=1.

Also,

2s^2=A(s^2+1)+(Bs^2-Bs+Cs-C)\\\\\Rightarrow 2s^2=(A+B)s^2+(-B+C)s+(A-C).

Comparing the coefficients of x² and 1, we get

A+B=2\\\\\Rightarrow B=2-1=1,\\\\\\A-C=0\\\\\Rightarrow C=A=1.

So, we can write

\dfrac{2s^2}{(s-1)(s^2+1)}=\dfrac{1}{s-1}+\dfrac{s+1}{s^2+1}\\\\\\\Rightarrow \dfrac{2s^2}{(s-1)(s^2+1)}=\dfrac{1}{s-1}+\dfrac{s}{s^2+1}+\dfrac{1}{s^2+1}.

Taking inverse Laplace transform on both sides of the above, we get

L^{-1}\{\dfrac{2s^2}{(s-1)(s^2+1)}\}=L^{-1}\{\dfrac{1}{s-1}\}+L^{-1}\{\dfrac{s}{s^2+1}+\dfrac{1}{s^2+1}\}\\\\\\\Rightarrow f(x)=e^{1\times x}+\cos (1\times x)+\dfrac{1}{1}\sin(1\times x)\\\\\\\Rightarrow f(x)=e^x+\cos x+\sin x.

Thus, the required answer is

f(x)=e^x+\cos x+\sin x.

You might be interested in
Find at least 4 equivalent fraction of<br>14 / 16​
r-ruslan [8.4K]

Answer:

hope i helped:) :)

Step-by-step explanation:

7/8

28/32

42/48

56/64

5 0
3 years ago
Read 2 more answers
What is<br> 3a+6b= 4 for b<br> Really need help
saw5 [17]

3a+6b=4

-3a both sides

6b=4-3a

÷6 both sides

b=2/3 -1/2 a

5 0
3 years ago
A different function is defined by the equation y=-2x.Which statement is true?
mr_godi [17]

Answer:

Plug in a Y value into Y and a X value into X and if both sides aren't equal the statement isnt true .....

5 0
4 years ago
Plot a rectangle with vertices (-1 ,-4) (-1 ,6 ) (3,6),
trapecia [35]

Answer:

4 Units

Step-by-step explanation:

8 0
4 years ago
How to solve the equation
Korolek [52]

Find average velocity when acceleration is constant

Set up an equation with position and time instead

Find the distance between the start and end points

Calculate the change in time

Divide the total displacement by the total time

Solve problems in two dimensions

3 0
3 years ago
Other questions:
  • Solve by factoring
    14·2 answers
  • How much would $300 invested at 7% interest compounded continuously be
    7·1 answer
  • An oven is set at 176.8°C. Marla increases the temperature by 23.8°C.
    8·1 answer
  • Brandon looked at 13 vegetables throughout each grocery store in his city. Each supermarket has a vegetable section of the same
    13·1 answer
  • Find the area of the polygon. It has a length of 10 in and a width of 5 in.
    10·1 answer
  • In the expression; [(15-5)+4 ) x 2 +3, Which operation should you perform first and why?​
    15·2 answers
  • PLEASE HELP ME I HAVE A MATH TEST DUE TODAY AND THIS IS THE LAST QUESTION!!!! "The public library has volunteers shelve books af
    13·1 answer
  • Data Analysis Plans Describe plan for data analysis for demographic variables (descriptive statistical tests). Describe plan for
    15·1 answer
  • Select each transformation that carries a square onto itself. <br><br> please i need help :(
    5·1 answer
  • Can someone please help me
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!