Answer:
21
Step-by-step explanation:
just because whsusjeej
Answer: a. 0.6759 b. 0.3752 c. 0.1480
Step-by-step explanation:
Given : The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard deviation of 2.2 minutes
i.e.
minutes
minutes
Let x be the long-distance call length.
a. The probability that a call lasts between 5 and 10 minutes will be :-

b. The probability that a call lasts more than 7 minutes. :
![P(X>7)=P(\dfrac{X-\mu}{\sigma}>\dfrac{7-6.3}{2.2})\\\\=P(Z>0.318)\ \ \ \ [z=\dfrac{X-\mu}{\sigma}]\\\\=1-P(Z](https://tex.z-dn.net/?f=P%28X%3E7%29%3DP%28%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%3E%5Cdfrac%7B7-6.3%7D%7B2.2%7D%29%5C%5C%5C%5C%3DP%28Z%3E0.318%29%5C%20%5C%20%5C%20%5C%20%5Bz%3D%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-P%28Z%3C0.318%29%5C%5C%5C%5C%3D1-0.6248%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7Bby%20z-table%7D%5D%5C%5C%5C%5C%3D0.3752)
c. The probability that a call lasts more than 4 minutes. :

Answer:
18
Step-by-step explanation:
20/2 + 8
Divide the numerator and denominator by 2
20 / 2
2 / 2
Divide the numbers
10
2 / 2
=
10 / 1
Any expression divided by 1 remains the same
10 + 8 = 18
Answer:
150
Step-by-step explanation:
15*10
Lets get rid of the 0 for now
15*1
That is 15 added to itself 0 times so it is 15
Now lets put the 0 back
and we will get
150
The 15th term will be 71. Why? Well, see below for an explanation!
By subtracting all of these numbers by the term that comes prior to them, we will find that all of them result in 5. Because of this, we know that each time the term increases, 5 is being added to the numbers. Additionally, I noticed that all of the numbers in this arithmetic sequence only end in a 1 or a 6. Because of this, we can apply the same principle when adding 5 each time:
First term: 1
Second term: 6
Third term: 11
Fourth term: 16
Fifth term: 21
Sixth term: 26
Seventh term: 31
Eighth term: 36
Ninth term: 41
Tenth term: 46
Eleventh term: 51
Twelfth term: 56
Thirteenth term: 61
Fourteenth term: 66
Fifteenth term: 71
By adding 5 each time and keeping in mind that the digits all end in only 1 or 6, we will find that the fifteenth term results in 71. Therefore, the 15th term is 71.
Your final answer: The 15th term of this arithmetic sequence comes down to be 71. If you need extra help, let me know and I will gladly assist you.