Answer:
Yes, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
Step-by-step explanation:
Bilinear Transform:
In digital signal processing, the bilinear transform is used to convert continuous time system into discrete time system representation.
Minimum-Phase:
We know that a system is considered to be minimum phase if the zeros are situated in the left half of the s-plane in continuous time system. In the same way, a system is minimum phase when its zeros are inside the unit circle of z-plane in discrete time system.
The bilinear transform is used to map the left half of the s-plane to the interior of the unit circle in the z-plane preserving the stability and minimum phase property of the system. Therefore, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
<span>This is a very nice counting question.
Suggestion / Hint: Count how many ways he can get from (0,0) to (5,7) by going through the point (2,3). Then subtract that from ALL POSSIBLE ways he can get from (0,0) to (5,7).
Hint for the hint: How many ways he can get from (0,0) to (5,7) by going through the point (2,3)? Well, that's the SUM of how many ways he can get from (0,0) to (2,3) and how many ways he get get from (2,3) to (5,7).
Hope this helps! :)</span>
A manufacturer<span> of </span>medical supplies produces 1 liter bags<span> of </span>saline solution. thecost<span> to </span>produce x thousand bags<span> of </span>saline<span> is </span>given<span> by the </span>cost<span> func. ... thousand </span>bags<span> of </span>saline<span> is</span>given<span> by the </span>cost function<span> C(x)=1.7x^2-5.3x+3.2, ...</span>
C ,in the most parenthesis