Well, first of all, the first statement (ABC = ADC) looks like it just says
that the two halves of the little square ... each side of the diagonal ...
are congruent. That's no big deal, and it's no help in answering the
question.
The effect of the dilation is that all the DIMENSIONS of the square
are doubled ... each side of the square becomes twice as long.
Then, when you multiply (length x width) to get the area, you'd have
Area = (2 x original length) x (2 x original width)
and that's
the same as (2 x 2) x (original length x original width)
= (4) x (original area) .
Here's an easy, useful factoid to memorize:
-- Dilate a line (1 dimension) by 'x' times . . . multiply the length by x¹
-- Dilate a shape (2 dimensions) by 'x' . . . multiply area by x²
-- Dilate a solid (3 dimensions) by 'x' . . . multiply volume by x³
And that's all the dimensions we have in our world.
_______________________________
Oh, BTW . . .
-- Dilate a point (0 dimensions) by 'x' . . . multiply it by x⁰ (1)
Answer:
X=6
Step-by-step explanation:
Move the variable to get 9x-7x=12
collect like terms to get 2x=12
divide to get 6
Answer:
See explanation
Step-by-step explanation:

By the distributive property this is equal to:

Hope this helps!
Answer:
22 feet
Step-by-step explanation:
Change 15 feet into inches using the conversion
1 foot = 12 inches, thus
15 ft = 15 × 12 = 180 inches
scale factor = 180 ÷ 3.75 = 48
Thus the actual dimensions of the boat are 48 times the model.
actual length = 48 × 5.5 = 264 inches = 264 ÷ 12 = 22 feet
Given,
3/3x + 1/(x + 4) = 10/7x
1/x + 1/(x+4) = 10/7x
Because the first term on LHS has 'x' in the denominator and the second term in the LHS has '(x + 4)' in the denominator. So to get a common denominator, multiply and divide the first term with '(x + 4)' and the second term with 'x' as shown below
{(1/x)(x + 4)/(x + 4)} + {(1/(x + 4))(x/x)} = 10/7x
{(1(x + 4))/(x(x + 4))} + {(1x)/(x(x + 4))} = 10/7x
Now the common denominator for both terms is (x(x + 4)); so combining the numerators, we get,
{1(x + 4) + 1x} / {x(x + 4)} = 10/7x
(x + 4 + 1x) / (x(x + 4)) = 10/7x
(2x + 4) / (x(x + 4)) = 10/7x
In order to have the same denominator for both LHS and RHS, multiply and divide the LHS by '7' and the RHS by '(x + 4)'
{(2x+4) / (x(x + 4))} (7 / 7) = (10 / 7x) {(x + 4) / (x + 4)}
(14x + 28) / (7x(x + 4)) = (10x + 40) / (7x(x + 4))
Now both LHS and RHS have the same denominator. These can be cancelled.
∴14x + 28 = 10x + 40
14x - 10x = 40 - 28
4x = 12
x = 12/4
∴x = 3