Of biogeochemical cycles
Because certain biogeochemical cycles take place to lessen these gases from forming since they are not beneficial for life if too much.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
It would be hard to make a model that shows the real sizes and distances between planets ( B )
Explanation:
Yuri building a model of the solar system will face the difficult of replicating the correct distances between the planets and the real sizes of the planets, because in model building the key factors of the Model must be represented properly.
The size of the planets and the distance between the planets are key factors when trying to model the solar system. but the distance between the planets depends on the position of the planets on their orbits which means the distances are not constant ( fixed ) hence that would be the limitation of his model.
Above information helps you bro.
Width of the fringes gets decreased if the distance between the slits is increased and thus we get narrower fringes.
What is Young's double-slit experiment?
- In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.
- This type of experiment was first performed, using light, by Thomas Young in 1802, as a demonstration of the wave behavior of light.
- A wave is split into two separate waves (the wave is typically made of many photons and better referred to as a wave front (not to be confused with the wave properties of the individual photon)) that later combine into a single wave.
- Changes in the path-lengths of both waves result in a phase shift, creating an interference pattern.
- A coherent light source, such as a laser beam, illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate.
- The wave nature of light causes the light waves passing through the two slits to interfere, producing bright and dark bands on the screen – a result that would not be expected if light consisted of classical particles. However, the light is always found to be absorbed at the screen at discrete points, as individual particles (not waves); the interference pattern appears via the varying density of these particle hits on the screen.
- Furthermore, versions of the experiment that include detectors at the slits find that each detected photon passes through one slit (as would a classical particle), and not through both slits (as would a wave).
- However, such experiments demonstrate that particles do not form the interference pattern if one detects which slit they pass through. These results demonstrate the principle of wave-particle duality.
To learn more about Young's double-slit experiment: brainly.com/question/28108126
#SPJ4