Answer:
When air rises in the atmosphere it gets cooler and is under less pressure. When air cools, it's not able to hold all of the water vapor it once was. Air also can't hold as much water when air pressure drops. The vapor becomes small water droplets or ice crystals and a cloud is formed.
Explanation:
hope this helps.
A
Cl is the chemical symbol for chlorine numbers after it are isotopes
Answer:
Impulse = 1000 Ns
Explanation:
Given the following data;
Force of collision = 1000 kg•m/s.
Time = 1 seconds
To find the impulse;
Mathematically, the impulse experienced by an object or body is given by the formula;
Impulse = force * time
Substituting into the formula, we have;
Impulse = 1000 * 1
Impulse = 1000 Ns
Answer:
a)P₂ =4 bar
b)W= - 1482.48 KJ
It means that work done on the system.
c)S₂ - S₁ = 3.42 KJ/K
Explanation:
Given that
T₁ = 300 K ,V₁ = 3 m³ ,P₁=2 bar
T₂ = 600 K ,V₂=V₁ 3 m³
Given that tank is rigid and insulated.It means that volume of the gas will remain constant.
Lets take the final pressure = P₂
For ideal gas P V = m R T



P₂ =4 bar
Internal energy
ΔU = m Cv ΔT
Cv=0.71 KJ/kg.k for air


m= 6.96 kg
ΔU= 6.96 x 0.71 x (600 - 300)
ΔU=1482.48 KJ
From first law
Q= ΔU + W
Q= 0 Insulated
W = - ΔU
W= - 1482.48 KJ
It means that work done on the system.
Change in the entropy


S₂ - S₁ = 3.42 KJ/K
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:
