Answer: We should expect its actual return in any particular year to be between<u> -40%</u> and<u> 80%</u>.
Step-by-step explanation:
Given : The continuously compounded annual return on a stock is normally distributed with a mean 20% and standard deviation of 30%.
From normal z-table, the z-value corresponds to 95.44 confidence is 2.
Therefore , the interval limits for 95.44 confidence level will be :
Lower limit = Mean -2(Standard deviation) = 20% -2(30%)= 20%-60%=-40%
Upper limit = Mean +2(Standard deviation)=20% +2(30%)= 20%+60%=80%
Hence, we should expect its actual return in any particular year to be between<u> -40%</u> and<u> 80%</u>.
There are 99 palindromic numbers between 10 and 1000: 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656, 666, 676, 686, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999.