9514 1404 393
Answer:
2√30 ∠-120°
Step-by-step explanation:
The modulus is ...
√((-√30)² +(-3√10)²) = √(30 +90) = √120 = 2√30
The argument is ...
arctan(-3√10/-√30) = arctan(√3) = -120° . . . . a 3rd-quadrant angle
The polar form of the number can be written as ...
(2√30)∠-120°
_____
<em>Additional comments</em>
Any of a number of other formats can be used, including ...
(2√30)cis(-120°)
(2√30; -120°)
(2√30; -2π/3)
2√30·e^(i4π/3)
Of course, the angle -120° (-2π/3 radians) is the same as 240° (4π/3 radians).
__
At least one app I use differentiates between (x, y) and (r; θ) by the use of a semicolon to separate the modulus and argument of polar form coordinates. I find that useful, as a pair of numbers (10.95, 4.19) by itself does not convey the fact that it represents polar coordinates. As you may have guessed, my personal preference is for the notation 10.95∠4.19. (The lack of a ° symbol indicates the angle is in radians.)
Mmmmmmmmmmmmmoooooooooooooooooooooooooooooooooooooooooooooooooosssssssssssssssssssssssssssseeeeeeeeeeeeeeeeeeeeeeeee
<u><em>Answer:</em></u>
SAS
<u><em>Explanation:</em></u>
<u>Before solving the problem, let's define each of the given theorems:</u>
<u>1- SSS (side-side-side):</u> This theorem is valid when the three sides of the first triangle are congruent to the corresponding three sides in the second triangle
<u>2- SAS (side-angle-side):</u> This theorem is valid when two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
<u>3- ASA (angle-side-angle):</u> This theorem is valid when two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle
<u>4- AAS (angle-angle-side):</u> This theorem is valid when two angles and a side that is not included between them in the first triangle are congruent to the corresponding two angles and a side that is not included between them in the second triangle
<u>Now, let's check the given triangles:</u>
We can note that the two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
This means that the two triangles are congruent by <u>SAS</u> theorem
Hope this helps :)
Answer:
just add 8+8+8 until you get to the number u want/need and the same with 7. Or you can multiply.
8x1=8
7x1=7
8x3=24 (8+8+8=24)
7x3=21 (7+7+7=21)
etc.
Hope it helps!
5^6= 15625
A= 7776
B= 30
C= 3125
D= 15625
Answer: D