1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
3 years ago
8

4(x−5) 2 =36 can i please get an answer to this

Mathematics
2 answers:
user100 [1]3 years ago
8 0

Two solutions were found :

x = 8

x = 2

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    4*(x-5)^2-(36)=0

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 4 • (x - 5)2 -  36  = 0

Step  2  :

2.1     Evaluate :  (x-5)2   =    x2-10x+25

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  4x2 - 40x + 64  =   4 • (x2 - 10x + 16)

Trying to factor by splitting the middle term

3.2     Factoring  x2 - 10x + 16

The first term is,  x2  its coefficient is  1 .

The middle term is,  -10x  its coefficient is  -10 .

The last term, "the constant", is  +16

Step-1 : Multiply the coefficient of the first term by the constant   1 • 16 = 16

Step-2 : Find two factors of  16  whose sum equals the coefficient of the middle term, which is   -10 .

     -16    +    -1    =    -17

     -8    +    -2    =    -10    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  -2

                    x2 - 8x - 2x - 16

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-8)

             Add up the last 2 terms, pulling out common factors :

                   2 • (x-8)

Step-5 : Add up the four terms of step 4 :

                   (x-2)  •  (x-8)

            Which is the desired factorization

Equation at the end of step  3  :

 4 • (x - 2) • (x - 8)  = 0

Step  4  :

Theory - Roots of a product :

4.1    A product of several terms equals zero.

When a product of two or more terms equals zero, then at least one of the terms must be zero.

We shall now solve each term = 0 separately

In other words, we are going to solve as many equations as there are terms in the product

Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

4.2      Solve :    4   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation :

4.3      Solve  :    x-2 = 0

Add  2  to both sides of the equation :

                     x = 2

Solving a Single Variable Equation :

4.4      Solve  :    x-8 = 0

Add  8  to both sides of the equation :

                     x = 8

Supplement : Solving Quadratic Equation Directly

Solving    x2-10x+16  = 0   directly

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

5.1      Find the Vertex of   y = x2-10x+16

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   5.0000  

Plugging into the parabola formula   5.0000  for  x  we can calculate the  y -coordinate :

 y = 1.0 * 5.00 * 5.00 - 10.0 * 5.00 + 16.0

or   y = -9.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2-10x+16

Axis of Symmetry (dashed)  {x}={ 5.00}

Vertex at  {x,y} = { 5.00,-9.00}

x -Intercepts (Roots) :

Root 1 at  {x,y} = { 2.00, 0.00}

Root 2 at  {x,y} = { 8.00, 0.00}

Solve Quadratic Equation by Completing The Square

5.2     Solving   x2-10x+16 = 0 by Completing The Square .

Subtract  16  from both side of the equation :

  x2-10x = -16

Now the clever bit: Take the coefficient of  x , which is  10 , divide by two, giving  5 , and finally square it giving  25

Add  25  to both sides of the equation :

 On the right hand side we have :

  -16  +  25    or,  (-16/1)+(25/1)

 The common denominator of the two fractions is  1   Adding  (-16/1)+(25/1)  gives  9/1

 So adding to both sides we finally get :

  x2-10x+25 = 9

Adding  25  has completed the left hand side into a perfect square :

  x2-10x+25  =

  (x-5) • (x-5)  =

 (x-5)2

Things which are equal to the same thing are also equal to one another. Since

  x2-10x+25 = 9 and

  x2-10x+25 = (x-5)2

then, according to the law of transitivity,

  (x-5)2 = 9

We'll refer to this Equation as  Eq. #5.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x-5)2   is

  (x-5)2/2 =

 (x-5)1 =

  x-5

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:

  x-5 = √ 9

Add  5  to both sides to obtain:

  x = 5 + √ 9

Since a square root has two values, one positive and the other negative

  x2 - 10x + 16 = 0

  has two solutions:

 x = 5 + √ 9

  or

 x = 5 - √ 9

Solve Quadratic Equation using the Quadratic Formula

5.3     Solving    x2-10x+16 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     1

                     B   =   -10

                     C   =   16

Accordingly,  B2  -  4AC   =

                    100 - 64 =

                    36

Applying the quadratic formula :

              10 ± √ 36

  x  =    —————

                   2

Can  √ 36 be simplified ?

Yes!   The prime factorization of  36   is

  2•2•3•3

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 36   =  √ 2•2•3•3   =2•3•√ 1   =

               ±  6 • √ 1   =

               ±  6

So now we are looking at:

          x  =  ( 10 ± 6) / 2

Two real solutions:

x =(10+√36)/2=5+3= 8.000

or:

x =(10-√36)/2=5-3= 2.000

Two solutions were found :

x = 8

x = 2

Nutka1998 [239]3 years ago
3 0

Answer:

19/2 or 9.5

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

4(x−5)(2)=36

8x+−40=36(Distribute)

8x−40=36

Step 2: Add 40 to both sides.

8x−40+40=36+40

8x=76

Step 3: Divide both sides by 8.

8x/8=76/8

x=19/2

You might be interested in
What is the value of y?<br> A. 83<br> B. 89<br> C. 96<br> D. 97
Readme [11.4K]

Answer:

<u>A. 83</u> is the correct option.

Step-by-step explanation:

all angles of a triangle are always equal to 180.

46 + 51 + y = 180

97 + y = 180

180 - 97 = <u>83</u>

Have a nice day! :-)

7 0
2 years ago
If oranges cost $0.75 for 1/3 of a dozen, how many oranges can you buy for $3.00?? ❗️Please help❗️
pishuonlain [190]
75 + 75 + 75. = 2.25 so no
6 0
3 years ago
Read 2 more answers
Write the equation of a line that passes the point (-6,9)and is perpendicular to a line that passes through the points (-2,1) an
Vanyuwa [196]

Answer:

hope you like my answer its-11

4 0
2 years ago
Trapezoid MNPQ is similar to Trapezoid RSTU. What is the length of the "x" on the misside side NP ? Also, what is the length of
ivolga24 [154]

Answer:

x =  15

y =  25

Step-by-step explanation:

Given

See attachment for MNPQ and RSTU

Required

Find x and y

To solve this question, we make use of equivalent ratios of corresponding side lengths.

The ratio of corresponding sides are:

MN : RS

NP : ST

PQ : TU

MQ : RU

From the attachment, we have:

MN : RS \to 18 : 30

NP : ST \to x : 25

PQ : TU \to 15 : y

To solve for x, we equate MN : RS and NP : ST

18 : 30 = x : 25

Express as fraction

\frac{18 }{ 30 }= \frac{x }{ 25}

Make x the subject

x =  25 * \frac{18 }{ 30 }

x =  \frac{25 * 18 }{ 30 }

x =  \frac{450}{ 30 }

x =  15

To solve for y, we equate MN : RS and PQ : TU

18 : 30 = 15 : y

Express as fraction

\frac{18 }{ 30 }= \frac{15 }{ y}

Make y the subject

y = 15 * \frac{30 }{ 18 }

y =  \frac{15 *30}{ 18 }

y =  \frac{450}{ 18 }

y =  25

8 0
3 years ago
What is the simplified form of the following expression?<br>  
ra1l [238]
(4/7)^3=.1865

6xyz/2xz simplifies to 3y
6 0
3 years ago
Read 2 more answers
Other questions:
  • Ms.Yen works 10 months of 12 each year. Give two fractions that represent the fraction a year she works.
    7·1 answer
  • How can I solve this equation y=-3(x+5)(x-1)
    6·1 answer
  • N
    8·1 answer
  • PLEASE HELP ASAP!!! I NEED CORRECT ANSWERS ONLY PLEASE!!! I NEED TO FINISH THESE QUESTIONS BEFORE MIDNIGHT TONIGHT.
    15·1 answer
  • The population of Augusta, WI, had a population of 1253 in 2000. If the population increased by 3% each year, what would be the
    11·2 answers
  • What do the angles in a quadrilateral add up to?*
    13·2 answers
  • Which of the following is an example of a rational number that is not an integer? a. -3 b. 1 c. 1/3 d. 3
    5·2 answers
  • Sarah is having a birthday party. She plans to give everyone 1-1/2 cups of ice cream. If she plans to serve 10 people, including
    7·1 answer
  • 5.<br> Determine the length of the missing side, if possible.<br> B<br> 8<br> a<br> A<br> 3
    11·2 answers
  • 15 points, 8-9 grade work
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!