1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
3 years ago
8

4(x−5) 2 =36 can i please get an answer to this

Mathematics
2 answers:
user100 [1]3 years ago
8 0

Two solutions were found :

x = 8

x = 2

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    4*(x-5)^2-(36)=0

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 4 • (x - 5)2 -  36  = 0

Step  2  :

2.1     Evaluate :  (x-5)2   =    x2-10x+25

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  4x2 - 40x + 64  =   4 • (x2 - 10x + 16)

Trying to factor by splitting the middle term

3.2     Factoring  x2 - 10x + 16

The first term is,  x2  its coefficient is  1 .

The middle term is,  -10x  its coefficient is  -10 .

The last term, "the constant", is  +16

Step-1 : Multiply the coefficient of the first term by the constant   1 • 16 = 16

Step-2 : Find two factors of  16  whose sum equals the coefficient of the middle term, which is   -10 .

     -16    +    -1    =    -17

     -8    +    -2    =    -10    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  -2

                    x2 - 8x - 2x - 16

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-8)

             Add up the last 2 terms, pulling out common factors :

                   2 • (x-8)

Step-5 : Add up the four terms of step 4 :

                   (x-2)  •  (x-8)

            Which is the desired factorization

Equation at the end of step  3  :

 4 • (x - 2) • (x - 8)  = 0

Step  4  :

Theory - Roots of a product :

4.1    A product of several terms equals zero.

When a product of two or more terms equals zero, then at least one of the terms must be zero.

We shall now solve each term = 0 separately

In other words, we are going to solve as many equations as there are terms in the product

Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

4.2      Solve :    4   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation :

4.3      Solve  :    x-2 = 0

Add  2  to both sides of the equation :

                     x = 2

Solving a Single Variable Equation :

4.4      Solve  :    x-8 = 0

Add  8  to both sides of the equation :

                     x = 8

Supplement : Solving Quadratic Equation Directly

Solving    x2-10x+16  = 0   directly

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

5.1      Find the Vertex of   y = x2-10x+16

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   5.0000  

Plugging into the parabola formula   5.0000  for  x  we can calculate the  y -coordinate :

 y = 1.0 * 5.00 * 5.00 - 10.0 * 5.00 + 16.0

or   y = -9.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2-10x+16

Axis of Symmetry (dashed)  {x}={ 5.00}

Vertex at  {x,y} = { 5.00,-9.00}

x -Intercepts (Roots) :

Root 1 at  {x,y} = { 2.00, 0.00}

Root 2 at  {x,y} = { 8.00, 0.00}

Solve Quadratic Equation by Completing The Square

5.2     Solving   x2-10x+16 = 0 by Completing The Square .

Subtract  16  from both side of the equation :

  x2-10x = -16

Now the clever bit: Take the coefficient of  x , which is  10 , divide by two, giving  5 , and finally square it giving  25

Add  25  to both sides of the equation :

 On the right hand side we have :

  -16  +  25    or,  (-16/1)+(25/1)

 The common denominator of the two fractions is  1   Adding  (-16/1)+(25/1)  gives  9/1

 So adding to both sides we finally get :

  x2-10x+25 = 9

Adding  25  has completed the left hand side into a perfect square :

  x2-10x+25  =

  (x-5) • (x-5)  =

 (x-5)2

Things which are equal to the same thing are also equal to one another. Since

  x2-10x+25 = 9 and

  x2-10x+25 = (x-5)2

then, according to the law of transitivity,

  (x-5)2 = 9

We'll refer to this Equation as  Eq. #5.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x-5)2   is

  (x-5)2/2 =

 (x-5)1 =

  x-5

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:

  x-5 = √ 9

Add  5  to both sides to obtain:

  x = 5 + √ 9

Since a square root has two values, one positive and the other negative

  x2 - 10x + 16 = 0

  has two solutions:

 x = 5 + √ 9

  or

 x = 5 - √ 9

Solve Quadratic Equation using the Quadratic Formula

5.3     Solving    x2-10x+16 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     1

                     B   =   -10

                     C   =   16

Accordingly,  B2  -  4AC   =

                    100 - 64 =

                    36

Applying the quadratic formula :

              10 ± √ 36

  x  =    —————

                   2

Can  √ 36 be simplified ?

Yes!   The prime factorization of  36   is

  2•2•3•3

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 36   =  √ 2•2•3•3   =2•3•√ 1   =

               ±  6 • √ 1   =

               ±  6

So now we are looking at:

          x  =  ( 10 ± 6) / 2

Two real solutions:

x =(10+√36)/2=5+3= 8.000

or:

x =(10-√36)/2=5-3= 2.000

Two solutions were found :

x = 8

x = 2

Nutka1998 [239]3 years ago
3 0

Answer:

19/2 or 9.5

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

4(x−5)(2)=36

8x+−40=36(Distribute)

8x−40=36

Step 2: Add 40 to both sides.

8x−40+40=36+40

8x=76

Step 3: Divide both sides by 8.

8x/8=76/8

x=19/2

You might be interested in
Estimate by rounding to the nearest ten. Then, find the sum<br> 376+266<br> The estimated sum is
harina [27]
The answer should be found by rounding 376 to 380 and 266 to 270....you will get 650
3 0
2 years ago
Read 2 more answers
How do I round 35.26 to the nearest whole <br> number
Masja [62]
The rounded number to nearest whole number of 35.26 will be 35.

This is because we consider lower limit if the decimal is lower than 5, and consider the upper limit when the decimal is greater than 5.
7 0
3 years ago
Lorenzo is planning a 285-mile trip. His car’s EPA rating is 18 mpg. The number of gallons of gas that Lorenzo will need for the
SpyIntel [72]
It would require 15.8333333 to make that trip.
4 0
3 years ago
Read 2 more answers
What can be divided by zero first one to answer correct wins brainllest
vodomira [7]

Answer:

Nothing

Step-by-step explanation:

Nothing is divisible with 0

8 0
2 years ago
Read 2 more answers
3. Write 0.368 in<br> scientific notation.
cricket20 [7]

Answer:

3.68 x 10^-1

Step-by-step explanation:

............

5 0
3 years ago
Other questions:
  • Find the quotient 5 - 7/8 subtracted
    9·1 answer
  • Write as a fraction. Reduce fractions. Use the "/" key for the fraction bar.
    13·2 answers
  • If You choose a card at random, what is the possibility of choosing an ace or a heart?
    7·2 answers
  • Which value is equivalent to 7 multiplied by 3 multiplied by 2 whole over 7 multiplied by 5, the whole raised to the power of 2
    5·1 answer
  • Which number is the greatest? 8.33, 3π, 17/2, √64
    13·1 answer
  • Giving away free brainliest​
    6·2 answers
  • How do you write 6.4 × 10^1 in standard form?
    6·1 answer
  • HELP ASAP! Subtract. Write your answer in simplest form.
    13·2 answers
  • A player kicks a soccer ball resting on the ground. The height of the ball, h(t) in feet, after t seconds can be represented by
    11·2 answers
  • True or False: A discrete function can have intervals like x&gt;3 as its domain.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!