Answer:
The probability that the maximum speed is at most 49 km/h is 0.8340.
Step-by-step explanation:
Let the random variable<em> </em><em>X</em> be defined as the maximum speed of a moped.
The random variable <em>X</em> is Normally distributed with mean, <em>μ</em> = 46.8 km/h and standard deviation, <em>σ</em> = 1.75 km/h.
To compute the probability of a Normally distributed random variable we first need to convert the raw score of the random variable to a standardized or <em>z</em>-score.
The formula to convert <em>X</em> into <em>z</em>-score is:

Compute the probability that the maximum speed is at most 49 km/h as follows:
Apply continuity correction:
P (X ≤ 49) = P (X < 49 - 0.50)
= P (X < 48.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that the maximum speed is at most 49 km/h is 0.8340.
It would be 9 buddy. Negative divided by negative turns into positive. 45 divided by 5 is 9.
Hey there! :)
Answer:
y = 11.
Step-by-step explanation:
Set both of the equations equal:
5x - 9 = x² - 3x + 7
Rearrange the equation:
0 = x² - 3x - 5x + 9 + 7
Combine like terms:
0 = x² - 8x + 16
Factor:
0 = (x -4)²
Solve for x:
0 = x - 4
x = 4.
Plug this into an equation to solve for 'y':
y = 5(4) - 9
y = 20 - 9
y = 11.