1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
6

Why is weathering slow in cold dry places

Biology
2 answers:
wariber [46]3 years ago
8 0
Weathering therefore occurs more slowly in granite than in layered sedimentary rocks. ... High temperatures and greater rainfall increase the rate of chemical weathering. 2. Rocks in tropical regions exposed to abundant rainfall and hot temperatures weather much faster than similar rocks residing in cold, dry regions!
ololo11 [35]3 years ago
8 0

Water is a major contribution to weathering. In a dry place, there will be not as much water to erode away small pieces of rocks, rust certain objects, or seep into the cracks of rocks to freeze and expand. Also, molecules in the air move much slower when the temperature is cold compared to when it is warm.

You might be interested in
Without a cuticle, a plant _____.
kolbaska11 [484]
The answer is A. The cuticle is a protective film that is non cellular covering the outer cell layer (epidermis) of green, aerial parts of plants. Cuticles protect plants against drying (desiccation), UV radiation, and various kinds of physical, chemical and (micro)biological agents. The cuticle also provides some support. Actually the cuticle which protects the underlying tissues has basically the same function as our own skin. In several groups of plants, cuticles are very resistant. Only few groups do not generally have highly resistant cuticles e.g. ferns and lycopods.
6 0
3 years ago
Read 2 more answers
5. A gene has a base sequence of GTC. Due to a mutation, the base sequence changes to GTG. Answer the following questions using
Dafna11 [192]
For B. It is CAC
For the rest there needs to be a codon table for us to see

5 0
3 years ago
Describe how blood is pumped and circulated through the body. Include the roles of the various chambers of the heart, the major
Korvikt [17]

The heart is a pump, usually beating about 60 to 100 times per minute. With each heartbeat, the heart sends blood throughout our bodies, carrying oxygen to every cell. After delivering the oxygen, the blood returns to the heart. The heart then sends the blood to the lungs to pick up more oxygen. This cycle repeats over and over again.

The circulatory system is made up of blood vessels that carry blood away from and towards the heart. Arteries carry blood away from the heart and veins carry blood back to the heart.

The circulatory system carries oxygen, nutrients, and hormones to cells, and removes waste products, like carbon dioxide. These roadways travel in one direction only, to keep things going where they should.

The heart has four chambers — two on top and two on bottom:

The two bottom chambers are the right ventricle and the left ventricle. These pump blood out of the heart. A wall called the interventricular septum is between the two ventricles.

The two top chambers are the right atrium and the left atrium. They receive the blood entering the heart. A wall called the interatrial septum is between the atria.

The atria are separated from the ventricles by the atrioventricular valves:

The tricuspid valve separates the right atrium from the right ventricle.

The mitral valve separates the left atrium from the left ventricle.

Two valves also separate the ventricles from the large blood vessels that carry blood leaving the heart:

The pulmonic valve is between the right ventricle and the pulmonary artery, which carries blood to the lungs.

The aortic valve is between the left ventricle and the aorta, which carries blood to the body.

What Are the Parts of the Circulatory System?

Two pathways come from the heart:

The pulmonary circulation is a short loop from the heart to the lungs and back again.

The systemic circulation carries blood from the heart to all the other parts of the body and back again.

In pulmonary circulation:

The pulmonary artery is a big artery that comes from the heart. It splits into two main branches, and brings blood from the heart to the lungs. At the lungs, the blood picks up oxygen and drops off carbon dioxide. The blood then returns to the heart through the pulmonary veins.

In systemic circulation:

Next, blood that returns to the heart has picked up lots of oxygen from the lungs. So it can now go out to the body. The aorta is a big artery that leaves the heart carrying this oxygenated blood. Branches off of the aorta send blood to the muscles of the heart itself, as well as all other parts of the body. Like a tree, the branches gets smaller and smaller as they get farther from the aorta.

At each body part, a network of tiny blood vessels called capillaries connects the very small artery branches to very small veins. The capillaries have very thin walls, and through them, nutrients and oxygen are delivered to the cells. Waste products are brought into the capillaries.

Capillaries then lead into small veins. Small veins lead to larger and larger veins as the blood approaches the heart. Valves in the veins keep blood flowing in the correct direction. Two large veins that lead into the heart are the superior vena cava and inferior vena cava. (The terms superior and inferior don't mean that one vein is better than the other, but that they're located above and below the heart.)

Once the blood is back in the heart, it needs to re-enter the pulmonary circulation and go back to the lungs to drop off the carbon dioxide and pick up more oxygen.

How Does the Heart Beat?

The heart gets messages from the body that tell it when to pump more or less blood depending on a person's needs. For example, when you're sleeping, it pumps just enough to provide for the lower amounts of oxygen needed by your body at rest. But when you're exercising, the heart pumps faster so that your muscles get more oxygen and can work harder.

How the heart beats is controlled by a system of electrical signals in the heart. The sinus (or sinoatrial) node is a small area of tissue in the wall of the right atrium. It sends out an electrical signal to start the contracting (pumping) of the heart muscle. This node is called the pacemaker of the heart because it sets the rate of the heartbeat and causes the rest of the heart to contract in its rhythm.

4 0
3 years ago
in multicellular organisms the cell cycle produces groups of cells that perform the same function what are these group cells cal
saw5 [17]
Group cells that have the same function are tissue
8 0
3 years ago
Malignancy of the larynx can be a devastating diagnosis. what does a client with a diagnosis of laryngeal cancer require
iris [78.8K]
Depending on what stage the malignancy is at, usually removal of the larynx, some surrounding tissues, and chemotherapy..
6 0
4 years ago
Other questions:
  • A nurse is caring for a client with heart failure. the healthcare provider prescribes a 2-gram sodium diet. what should the nurs
    10·1 answer
  • Rabbits like this one change colors when the winter comes. In the spring, this white rabbit will turn back to brown. What would
    6·1 answer
  • Where is the brain of a rotifer located?
    10·2 answers
  • Where did Darius build a new capital?
    10·1 answer
  • What mechanism is responsible for the movement of water in this image?
    11·1 answer
  • Use lysosome in a sentence
    10·2 answers
  • Which was Ventor’s contribution to science?
    11·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B52%20%5Ctimes%2084%7D%20" id="TexFormula1" title=" \sqrt{52 \times 84} " alt=" \s
    9·1 answer
  • How much more CO2 is in the atmosphere today compared to 150 years ago?
    5·2 answers
  • 7<br><br><br> help!<br><br><br> ------------
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!