Answer: After the experiment in step 5
Explanation:
In a scientific investigation, first step is to formulate a question. Second step is to do background research. In third step after background research, a hypothesis is constructed. In order to test hypothesis, an experiment is designed and performed. In the fifth step, data is collected from the experiment and in the last step, conclusions are drawn from the collected data.
Answer:
The answer to your question is Environment
It is D. <span>Packets of stored energy are converted to chemical energy in glucose.</span>
The answer is <span>Anaphase I separates homologous chromosomes and anaphase II separates sister chromatids into daughter cells.</span>
Meiosis is a cell division which results in the reduction of chromosome number by half - from diploid to haploid - in daughter cells. It consists of meiosis I and meiosis II. Meiosis I produces two haploid cells. Meiosis II is analogous to mitosis, so in total, meiosis results in four haploid cells. So, in meiosis, there are two anaphases - the anaphase I in meiosis I and the anaphase II in meiosis II.
<span>In anaphase I, the sister chromatids separate from each other to the opposite sides of the cells. In meiosis I there are 46 chromosomes in duplicate, which are present as pairs of sister chromatids. In anaphase of meiosis II, since the cell is haploid, there are 23 chromosomes in duplicate, which are present as sister chromatids.</span>
Answer:
sarcoplasmic reticulum deteriorates and ATP production is stopped
Explanation:
Rigor mortis is the third stage of death characterized by stiffening of joints and muscles in body. The stiffening occurs because muscles are not able to return to the relaxed state. There are two reasons for rigor mortis, depletion of ATP and increase in calcium concentration in cytosol. Due to these factors the actin-myosin crossbridge is not able to break and the muscles remain in contracted state.
Sarcoplasmic reticulum deteriorates and calcium is released into the cytosol. Sarcolemma ( covering of muscle fiber ) also breaks down releasing extra calcium into the cytosol. Calcium is responsible for formation of actin-myosin cross bridge and when its concentration increases the bridge is formed continuously leading to stiffening of muscles and joints.