1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
5

Which shows the equation below written in the form ax^2+bx+c=0?

Mathematics
2 answers:
Naddika [18.5K]3 years ago
8 0

The correct answer is A

mash [69]3 years ago
5 0
2x^2 - 3 = -4x - 1
2x^2 + 4x - 3 + 1 = 0
2^2 + 4x - 2 = 0 <==
You might be interested in
What’s 30 minutes from 12:42
san4es73 [151]

The correct answer: 01:12 A.M. OR 13:12 P.M.

First, decompose 30, 18 + 12 = 30.

Since 12:42 Minutes + 18 Minutes

is equal to 13:00, then add the remaining 12 Minutes, completing a total of 01:12 a.m. OR 13:12 P.M.

MARK "BRAINLIEST" FOR MORE GREAT CONTENT!

3 0
2 years ago
With all work shown what is 468 x 76
Naily [24]



468
x 76
_____
2408
+ 321650
_________
35,168
3 0
3 years ago
Taylor Series Questions!
riadik2000 [5.3K]
5.
f(x)=\sin x\implies f(\pi)=0
f'(x)=\cos x\implies f'(\pi)=-1
f''(x)=-\sin x\implies f''(\pi)=0
f'''(x)=-\cos x\implies f'''(\pi)=1

Clearly, each even-order derivative will vanish, and the terms that remain will alternate in sign, so the Taylor series is given by

f(x)=-(x-\pi)+\dfrac{(x-\pi)^3}{3!}-\dfrac{(x-\pi)^5}{5!}+\cdots
f(x)=\displaystyle\sum_{n\ge0}\frac{(-1)^{n-1}(x-\pi)^{2n+1}}{(2n+1)!}

Your answer is off by a sign - the source of this error is the fact that you used the series expansion centered at x=0, not x=\pi, and so the sign on each derivative at x=\pi is opposite of what it should be. I'm sure you can figure out the radius of convergence from here.

- - -

6. Note that this is already a polynomial, so the Taylor series will strongly resemble this and will consist of a finite number of terms. You can get the series by evaluating the derivatives at the given point, or you can simply rewrite the polynomial in x as a polynomial in x-2.

f(x)=x^6-x^4+2\implies f(2)=50
f'(x)=6x^5-4x^3\implies f'(2)=160
f''(x)=30x^4-12x^2\implies f''(2)=432
f'''(x)=120x^3-24x\implies f'''(2)=912
f^{(4)}(x)=360x^2-24\implies f^{(4)}(2)=1416
f^{(5)}(x)=720x\implies f^{(5)}(2)=1440
f^{(6)}(x)=720\implies f^{(6)}(2)=720
f^{(n\ge7)}(x)=0\implies f^{(n\ge7)}(2)=0

\implies f(x)=50+160(x-2)+216(x-2)^2+152(x-2)^3+59(x-2)^4+12(x-2)^5+(x-2)^6

If you expand this, you will end up with f(x) again, so the Taylor series must converge everywhere.

I'll outline the second method. The idea is to find coefficients so that the right hand side below matches the original polynomial:

x^6-x^4+2=(x-2)^6+a_5(x-2)^5+a_4(x-2)^4+a_3(x-2)^3+a_2(x-2)^2+a_1(x-2)+a_0

You would expand the right side, match up the coefficients for the same-power terms on the left, then solve the linear system that comes out of that. You would end up with the same result as with the standard derivative method, though perhaps more work than necessary.

- - -

7. It would help to write the square root as a rational power first:

f(x)=\sqrt x=x^{1/2}\implies f(4)=2
f'(x)=\dfrac{(-1)^0}{2^1}x^{-1/2}\implies f'(4)=\dfrac1{2^2}
f''(x)=\dfrac{(-1)^1}{2^2}x^{-3/2}\implies f''(4)=-\dfrac1{2^5}
f'''(x)=\dfrac{(-1)^2(1\times3)}{2^3}x^{-5/2}\implies f'''(4)=\dfrac3{2^8}
f^{(4)}(x)=\dfrac{(-1)^3(1\times3\times5)}{2^4}x^{-7/2}\implies f^{(4)}(4)=-\dfrac{15}{2^{11}}
f^{(5)}(x)=\dfrac{(-1)^4(1\times3\times5\times7)}{2^5}x^{-9/2}\implies f^{(5)}(4)=\dfrac{105}{2^{14}}

The pattern should be fairly easy to see.

f(x)=2+\dfrac{x-4}{2^2}-\dfrac{(x-4)^2}{2^5\times2!}+\dfrac{3(x-4)^3}{2^8\times3!}-\dfrac{15(x-4)^4}{2^{11}\times4!}+\cdots
f(x)=2+\displaystyle\sum_{n\ge1}\dfrac{(-1)^n(-1\times1\times3\times5\times\cdots\times(2n-3)}{2^{3n-1}n!}(x-4)^n

By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{\dfrac{(-1)^{n+1}(-1\times\cdots\times(2n-3)\times(2n-1))(x-4)^{n+1}}{2^{3n+2}(n+1)!}}{\dfrac{(-1)^n(-1\times\cdots\tiems(2n-3))(x-4)^n}{2^{3n-1}n!}}\right|
\implies\displaystyle\frac{|x-4|}8\lim_{n\to\infty}\frac{2n-1}{n+1}=\frac{|x-4|}4
\implies |x-4|

so that the ROC is 4.

- - -

10. Without going into much detail, you should have as your Taylor polynomial

\sin x\approx T_4(x)=\dfrac12+\dfrac{\sqrt3}2\left(x-\dfrac\pi6\right)-\dfrac14\left(x-\dfrac\pi6\right)^2-\dfrac1{4\sqrt3}\left(x-\dfrac\pi6\right)^3+\dfrac1{48}\left(x-\dfrac\pi6\right)^4

Taylor's inequality then asserts that the error of approximation on the interval 0\le x\le\dfrac\pi3 is given by

|\sin x-T_4(x)|=|R_4(x)|\le\dfrac{M\left|x-\frac\pi6\right|^5}{5!}

where M satisfies |f^{(5)}(x)|\le M on the interval.

We know that (\sin x)^{(5)}=\cos x is bounded between -1 and 1, so we know M=1 will suffice. Over the given interval, we have \left|x-\dfrac\pi6\right|\le\dfrac\pi6, so the remainder will be bounded above by

|R_4(x)|\le\dfrac{1\times\left(\frac\pi6\right)^5}{5!}=\dfrac{\pi^5}{933120}\approx0.000328

which is to say, over the interval 0\le x\le\dfrac\pi3, the fourth degree Taylor polynomial approximates the value of \sin x near x=\dfrac\pi6 to within 0.000328.
7 0
4 years ago
caleb gave the cashier $20 to buy two identical Christmas cards there were no sales tax or any other charges . the cashier gave
julsineya [31]
$2.92

$20 - $17.08 = $2.92
6 0
4 years ago
Read 2 more answers
1.
Mariana [72]

Answer:

1529

Step-by-step explanation:

203*12=2436

now it subtraction 2436-907=1529

3 0
2 years ago
Other questions:
  • Hello! Please help me with this. The screenshot is below :) Thx &lt;3
    7·1 answer
  • Which point is an x-intercept Og the quadratic function f(x) = (x-4)(x+2)?
    7·2 answers
  • ((whoever gets this right gets brainliest))
    8·2 answers
  • What is the formula for the area of a circle?
    10·1 answer
  • X and Y are two stations which are 320 miles apart. A train starts at a certain time from X and travels towards Y at 70 mph. Aft
    7·2 answers
  • Find the distance between (0, 2) and (-4, 4). Give your answer in simplest radical form.
    14·1 answer
  • What is the answer for this 19/20-1800 Answer with whole numbers
    5·1 answer
  • The function g is defined by g(x)=ax−7, where a is a constant. Find a, if the graph of g passes through the point ( 1/3 ,−2).
    8·1 answer
  • Solve for x. Round to the nearest tenth. x =
    8·1 answer
  • Plsss help on my test
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!