1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
15

Is it an irrational number

Mathematics
1 answer:
Vilka [71]3 years ago
6 0

Answer:

no

Step-by-step explanation:

A number that cannot be expressed that way is irrational. For example, one third in decimal form is 0.33333333333333 (the threes go on forever). However, one third can be express as 1 divided by 3, and since 1 and 3 are both integers, one third is a rational number.

You might be interested in
What is the length of a 100 yard football field, measured in meters
NemiM [27]

it would be 160 feet wide

5 0
3 years ago
Write a linear equation for the graph in point-slope form. Show your work. (2 points) (PLEASE HELP)
Wittaler [7]

Answer:

We need to see the graph to answer this question

4 0
3 years ago
Read 2 more answers
Pls help i will mark brainliest!:) thank you!;D
pashok25 [27]
<h2><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em></h2>

<em><u>H</u></em><em><u>e</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>g</u></em><em><u>i</u></em><em><u>v</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em>

<em><u>T</u></em><em><u>o</u></em><em><u> </u></em><em><u>f</u></em><em><u>i</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>:</u></em><em><u> </u></em><em><u> </u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>w</u></em><em><u>e</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em>

<em><u>=</u></em><em><u> </u></em>

<em><u>\sqrt{ {(x2 - x1)}^{2} }  +  \sqrt{ {(y2 - y1)}^{2} }</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>P</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>)</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>3</u></em><em><u>,</u></em><em><u>6</u></em><em><u>)</u></em>

<em><u>s</u></em><em><u>o</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em>

<em><u>\sqrt{ {(0 - 0)}^{2} }  +  \sqrt{ {(6 - 3)}^{2} }</u></em>

<em><u>\sqrt{ {3}^{2} }</u></em>

<em><u>3</u></em>

So 3.0 is the distance

Hope it helps

7 0
3 years ago
Please help with geometry thx
anastassius [24]

Answer:

Correct answer:  Fourth answer  As = 73.06 m²

Step-by-step explanation:

Given:

Radius of circle R = 16 m

Angle of circular section  θ = π/2

The area of a segment is obtained by subtracting from the area of the circular section the area of an right-angled right triangle.

We calculate the circular section area using the formula:

Acs = R²· θ / 2

We calculate the area of an right-angled right triangle using the formula:

Art = R² / 2

The area of a segment is:

As = Acs - Art = R²· θ / 2 - R² / 2 = R² / 2 ( θ - 1)

As = 16² / 2 · ( π/2 - 1) = 256 / 2 · ( 1.570796 - 1) = 128 · 0.570796 = 73.06 m²

As = 73.06 m²

God is with you!!!

7 0
3 years ago
Given: The coordinates of isosceles trapezoid JKLM are J(-b, c), K(b, c), L(a, 0), and M(-a, 0). Prove: The diagonals of an isos
In-s [12.5K]
We have to find the lengths of the diagonals KM and JL:
d ( KM ) = √ (( - a - b )² + ( 0 - c )²) = √ (( a + b )² + c² )
d ( JL ) = √ ( ( a - ( - b ) )² + ( 0 - c )²) = √ ( ( a + b )² + c² )
So the lengths of the diagonals KM and JL are congruent.
The lengths of the diagonals of the isosceles trapezoid are congruent.   
6 0
3 years ago
Read 2 more answers
Other questions:
  • How do i solve the inequality 55 &gt; -7v +6
    10·1 answer
  • How to the solve the equation by completing the square?
    9·1 answer
  • Find the length of AB
    11·1 answer
  • How do you think inequalities are different from equations you have worked with before?
    6·1 answer
  • Adina makes $53,112 per year and is looking to find a new apartment rental in her city. She searched online and found an apartme
    15·1 answer
  • Can someone please answer. There is one problem. There's a picture. Thank you!
    14·1 answer
  • How many solutions 9x +2y =9 / -3x + y=2
    5·1 answer
  • What is the equivalent expression for 4(w-5)?
    15·1 answer
  • Rita has a rope 5 m long. She cuts it into 2 pieces of length 2 m 30 cm and 1 m 65 cm.
    12·1 answer
  • Please help me with this geometry question, Im pretty sure you need to use Sas congruence rule
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!