Answer:
-0.663
Step-by-step explanation:
-38/180 × pi = -0.6632251158
The answer is C. C=-1
-4(-1)= 4 a negative times a negative is positive
4+5 is 9
Answer:
2.29 ft of side length and 1.14 height
Step-by-step explanation:
a) Volume V = x2h, where x is side of square base and h is hite.
Then surface area S = x2 + 4xh because box is open.
b) From V = x2h = 6 we have h = 6/x2.
Substitude in formula for surface area: S = x2 + 4x·6/x2, S = x2 + 24/x.
We get S as function of one variable x. To get minimum we have to find derivative S' = 2x - 24/x2 = 0, from here 2x3 - 24 = 0, x3 = 12, x = (12)1/3 ≅ 2.29 ft.
Then h = 6/(12)2/3 = (12)1/3/2 ≅ 1.14 ft.
To prove that we have minimum let get second derivative: S'' = 2 + 48/x3, S''(121/3) = 2 + 48/12 = 6 > 0.
And because by second derivative test we have minimum: Smin = (12)2/3 + 4(12)1/3(12)1/3/2 = 3(12)2/3 ≅ 15.72 ft2
Change the order of integration.
![\displaystyle \int_0^1 \int_{2y}^2 \cos(x^2) \, dx \, dy = \int_0^2 \int_0^{x/2} \cos(x^2) \, dy \, dx \\\\ ~~~~~~~~ = \int_0^2 \cos(x^2) y \bigg|_{y=0}^{y=x/2} \, dx \\\\ ~~~~~~~~ = \frac12 \int_0^2 x \cos(x^2) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cint_%7B2y%7D%5E2%20%5Ccos%28x%5E2%29%20%5C%2C%20dx%20%5C%2C%20dy%20%3D%20%5Cint_0%5E2%20%5Cint_0%5E%7Bx%2F2%7D%20%5Ccos%28x%5E2%29%20%5C%2C%20dy%20%5C%2C%20dx%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20%5Cint_0%5E2%20%5Ccos%28x%5E2%29%20y%20%5Cbigg%7C_%7By%3D0%7D%5E%7By%3Dx%2F2%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20%5Cfrac12%20%5Cint_0%5E2%20x%20%5Ccos%28x%5E2%29%20%5C%2C%20dx)
Substitute
and
.
![\displaystyle \frac12 \int_0^2 x \cos(x^2) \, dx = \frac14 \int_0^4 \cos(u) \, du = \frac14 \sin(u) \bigg|_{u=0}^{u=4} = \boxed{\frac{\sin(4)}4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac12%20%5Cint_0%5E2%20x%20%5Ccos%28x%5E2%29%20%5C%2C%20dx%20%3D%20%5Cfrac14%20%5Cint_0%5E4%20%5Ccos%28u%29%20%5C%2C%20du%20%3D%20%5Cfrac14%20%5Csin%28u%29%20%5Cbigg%7C_%7Bu%3D0%7D%5E%7Bu%3D4%7D%20%3D%20%5Cboxed%7B%5Cfrac%7B%5Csin%284%29%7D4%7D)
To start off, you can divide the right side of the equation by x to get rid of most of the x's so you get the polynomial x^4 - 10x^2 + 9. This means that f(x) = x^4 - 10x^2 + 9x. By factoring the right side of the equation, you get f(x) = (x^2 - 1)(x^2 - 9). I think the minimum value is 1 and the maximum value is 3.