Answer:
the answers are 12.5, 5, 2, 0.8 and 0.32
Step-by-step explanation:
2(0.4)^-2
=2(6.25)
= 12.5
2(0.4)^-1
= 2(2.5)
=5
2(0.4)^0
=2(1)
=2
2(0.4)^1
=2(0.4)
=0.8
2(0.4)^2
=2(0.16)
=0.32
Answer:
The fraction or percentage of the applicants that we would expect to have a score of 400 or above is 77.34%
Step-by-step explanation:
Scores are normally distributed with a mean of 460 and a standard deviation of 80. For a value x, the associated z-score is computed as
, therefore, the z-score for 400 is given by
. To compute the fraction of the applicants that we would expect to have a score of 400 or above, we should compute the probability P(Z > -0.75) = 0.7734, i.e., the fraction or percentage of the applicants that we would expect to have a score of 400 or above is 77.34%
4w-7k=28
-7k+4w+-4w=28+-4w
-7k=-4w+28
-7k/-7=-4w+28/-7
k=4/7w-4
:)
I think it's b :))))))))))))