1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
13

An artificial lake is in the shape of a rectangle and has an area of 9/20 square mile the width of the lake is 1/5 the length of

the lake what are the dimensions of the lake?
Mathematics
1 answer:
DIA [1.3K]3 years ago
7 0
Answer:  The dimensions are:   " 1.5 mi.  ×  ³⁄₁₀  mi. " .
_______________________________________________
             { length = 1.5 mi. ;  width =  ³⁄₁₀  mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:

A = L * w ; 

in which:  A = Area = (9/20) mi.² ,
                L = Length = ?
                w = width = (1/5)*L = (L/5) = ?
________________________________________
  A = L * w ;  we want to find the dimensions; that is, the values for
                         "Length (L)"  and "width (w)" ; 
_______________________________________
Plug in our given values:
_______________________________________
 (9/20) mi.² = L * (L/5) ;  in which: "w = L/5" ; 
 
     → (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
   
          ↔  L² / 5  = 9/20 ;
 
            →  (L² * ? / 5 * ?) = 9/20 ?    

                →     20÷5 = 4 ;  so; L² *4 = 9 ;
 
                   ↔    4 L² = 9 ; 
 
                   →  Divide EACH side of the equation by "4" ;
           
                   →   (4 L²) / 4 = 9/4 ;
______________________________________
           to get:  →  L² = 9/4 ; 
 Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________          
 
     →   ⁺√(L²)   =   ⁺√(9/4) ;

    →   L  =  (√9) / (√4) ; 

    →  L = 3/2 ; 

    → w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??

→ (3/2)mi. * (3/10)mi.  =  (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are: 

Length = (3/2) mi. ;  write as: 1.5 mi.

width = ³⁄₁₀ mi.
___________________________________________________
or; write as:  " 1.5 mi.  ×  ³⁄₁₀ mi. " .
___________________________________________________
You might be interested in
What is 17/21and 2/10 close to 0, 1 or 1/2
IRINA_888 [86]
Its close to 1/2 I think this is an interesting question 
3 0
3 years ago
Read 2 more answers
Raymond just got done jumping at Super Bounce Trampoline Center. The total cost of his session was \$43.25$43.25dollar sign, 43,
Mrrafil [7]
7 + 1.25t = 43.25 <== ur equation
1.25t = 43.25 - 7
1.25t = 36.25
t = 36.25 / 1.25
t = 29 <== he was jumping for 29 minutes
7 0
3 years ago
Read 2 more answers
The sum of two consecutive even integers is 2 find two integers
pochemuha

the two consecutive even integers are:

x

x+2

x+x+2=2

2x+2=2

2x=0

x=0

x+2=2

7 0
3 years ago
Which equations represent the line that is perpendicular to the line 5x − 2y = −6 and passes through the point (5, −4)? Select t
nignag [31]

For this case we have that by definition, the equation of a line in the slope-intersection form is given by:

y = mx + b

Where:

m: It's the slope

b: It is the cut-off point with the y axis

On the other hand we have that if two lines are perpendicular, then the product of their slopes is -1. So:

m_ {1} * m_ {2} = - 1

The given line is:

5x-2y = -6\\-2y = -6-5x\\2y = 5x + 6\\y = \frac {5} {2} x + \frac {6} {2}\\y = \frac {5} {2} x + 3

So we have:

m_ {1} = \frac {5} {2}

We find m_ {2}:m_ {2} = \frac {-1} {\frac {5} {2}}\\m = - \frac {2} {5}

So, a line perpendicular to the one given is of the form:

y = - \frac {2} {5} x + b

We substitute the given point to find "b":

-4 = - \frac {2} {5} (5) + b\\-4 = -2 + b\\-4 + 2 = b\\b = -2

Finally we have:

y = - \frac {2} {5} x-2

In point-slope form we have:

y - (- 4) = - \frac {2} {5} (x-5)\\y + 4 = - \frac {2} {5} (x-5)

ANswer:

y = - \frac {2} {5} x-2\\y + 4 = - \frac {2} {5} (x-5)

3 0
3 years ago
Read 2 more answers
Are these answers correct
professor190 [17]
No you have to move the decimal place over 2 times to the left
7 0
3 years ago
Other questions:
  • James spent $(2y2 + 6). He bought notebooks that each cost $(y2 − 1). The expression to find the number of notebooks James bough
    13·1 answer
  • M and N are equilateral triangles. The scale factor of M to N is 8 : 4.1 and the area of triangle M is 320 square inche. find th
    11·2 answers
  • I would like to know what 0.5-0.125q=(q-1)/4 equals out to.
    13·1 answer
  • 8 - 3 ( p - 4 ) = 2p
    12·2 answers
  • (12y2<br> + 17y - 4) + (9y2<br> - 13y + 3) =
    13·2 answers
  • What is the probability of hitting 2 out of 4 pitches​
    8·1 answer
  • 5×10^5/1×10^2 write in scientific notation
    9·1 answer
  • 50% of 320 is equal to 80% of what number?
    7·2 answers
  • Find the median of the data. 3,5,7,9,11,3,8 The median is...
    13·1 answer
  • What is the opposite? 1) -10 2) -35 3) 124) 100 5) 1 6) X
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!