Explanation:
i guess it's through thousands of research and experiments they conducted
Answer:
TRIAL 1:
For “Event 0”, put 100 pennies in a large plastic or cardboard container.
For “Event 1”, shake the container 10 times. This represents a radioactive decay event.
Open the lid. Remove all the pennies that have turned up tails. Record the number removed.
Record the number of radioactive pennies remaining.
For “Event 2”, replace the lid and repeat steps 2 to 4.
Repeat for Events 3, 4, 5 … until no pennies remain in the container.
TRIAL 2:
Repeat Trial 1, starting anew with 100 pennies.
Calculate for each event the average number of radioactive pennies that remain after shaking.
Plot the average number of radioactive pennies after shaking vs. the Event Number. Start with Event 0, when all the pennies are radioactive. Estimate the half-life — the number of events required for half of the pennies to decay.
Explanation:
Answer:
The final pressure is approximately 0.78 atm
Explanation:
The original temperature of the gas, T₁ = 263.0 K
The final temperature of the gas, T₂ = 298.0 K
The original volume of the gas, V₁ = 24.0 liters
The final volume of the gas, V₂ = 35.0 liters
The original pressure of the gas, P₁ = 1.00 atm
Let P₂ represent the final pressure, we get;



∴ The final pressure P₂ ≈ 0.78 atm.
Answer:
[ S2- ] = 4.0 E-47 M
Explanation:
- PbS(s) → Pb2+ + S2-
- HgS(s) → Hg2+ + S2-
∴ Ksp PbS = 3.4 E-28 = [Pb2+]*[S2-]
∴ [Pb2+] = 0.181 M
∴ Ksp HgS = 4.0 E-53 = [Hg2+]*[S2-]
∴ [Hg2+] = 0.174 M
∴ Ksp PbS > Ksp HgS ⇒ precipitate first Hg2+:
∴ [ Hg2+ ] = 1.0 E-6 M
⇒ [S2-] = 4.0 E-53 / 1.0 E-6 = 4.0 E-47 M