Answer:
a) Keq = 4.5x10^-6
b) [oxaloacetate] = 9x10^-9 M
c) 23 oxaloacetate molecules
Explanation:
a) In the standard state we have to:
ΔGo = -R*T*ln(Keq) (eq.1)
ΔGo = 30.5 kJ/moles = 30500 J/moles
R = 8.314 J*K^-1*moles^-1
Clearing Keq:
Keq = e^(ΔGo/-R*T) = e^(30500/(-8.314*298)) = 4.5x10^-6
b) Keq = ([oxaloacetate]*[NADH])/([L-malate]*[NAD+])
4.5x10^-6 = ([oxaloacetate]/(0.20*10)
Clearing [oxaloacetate]:
[oxaloacetate] = 9x10^-9 M
c) the radius of the mitochondria is equal to:
r = 10^-5 dm
The volume of the mitochondria is:
V = (4/3)*pi*r^3 = (4/3)*pi*(10^-15)^3 = 4.18x10^-42 L
1 L of mitochondria contains 9x10^-9 M of oxaloacetate
Thus, 4.18x10^-42 L of mitochondria contains:
molecules of oxaloacetate = 4.18x10^-42 * 9x10^-9 * 6.023x10^23 = 2.27x10^-26 = 23 oxaloacetate molecules
We use the formula:
PV = nRT
First let us get the volume V:
volume = 14 ft * 12 ft * 10 ft = 1,680 ft^3
Convert this to m^3:
volume = 1680 ft^3 * (1 m / 3.28 ft)^3 = 47.61 m^3
n = PV / RT
n = (1 atm) (47.61 m^3) / (293.15 K * 8.21x10^-5 m3 atm /
mol K)
<span>n = 1,978.13 mol</span>
Answer: Refrigerator and fire extinguisher
Explanation: Refrigerator:An evaporator fan draws air from the refrigerator and blows it over the evaporator coils. The liquid refrigerant absorbs heat from the air and the air blows back into the refrigerator at a lower temperature, cooling the refrigerator. The liquid refrigerant starts to vaporize as it heats up and moves to the compressor.
Fire extinguisher:They work by smothering the fire: when you put a layer of powder or foam on the fire, you cut the fuel off from the oxygen around it, and the fire goes out. Carbon dioxide (CO2) extinguishers contain a mixture of liquid and gaseous carbon dioxide (a nonflammable gas).
Answer: the molecular formula is C10H20O
Explanation:Please see attachment for explanation