1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
2 years ago
11

--(4+h) = 3h What is H

Mathematics
1 answer:
butalik [34]2 years ago
7 0
H= -1

Distribute:

-(4+h)= -4 - h

-4 - h= 3h

-4 +h = 3h + h

-4= 4h

-1 = h
You might be interested in
If the variance is 81 grams, what is the standard deviation four times?
Svetlanka [38]

Answer:

102

Step-by-step explanation:

i guess

6 0
2 years ago
What is the actual distance of 9 cm on a map whose scale shows that 3 cm = 5 km? A. 18 km incorrect answer B. 12 km incorrect an
soldier1979 [14.2K]

Answer:

15 km

Step-by-step explanation:

3 cm on the map = 5 km

3 x 3 = 9 cm

5 x 3 = 15 km

So, 9 cm on the map = 15 km

4 0
3 years ago
Read 2 more answers
Find 30% decrease from 95<br> 68.40<br> 63.20<br> 66.50
IgorC [24]

Answer:

66.50

stay home and be safe

7 0
2 years ago
Expand and simplify 5(2x-1) -2(3x+2) First person to answer gets brainliest !!
BlackZzzverrR [31]
Expanded: 4x-9
Simplified: 4x-9
8 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20x%20%3D%20log_%7Ba%7D%28bc%29" id="TexFormula1" title="\rm \: x = log_{a}(
timama [110]

Use the change-of-basis identity,

\log_x(y) = \dfrac{\ln(y)}{\ln(x)}

to write

xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}

Use the product-to-sum identity,

\log_x(yz) = \log_x(y) + \log_x(z)

to write

xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}

Redistribute the factors on the left side as

xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}

and simplify to

xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)

Now expand the right side:

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}

Simplify and rewrite using the logarithm properties mentioned earlier.

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1

xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}

xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}

xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)

\implies \boxed{xyz = x + y + z + 2}

(C)

6 0
1 year ago
Other questions:
  • Simplify 8/10 to find the sum/product solve the problem
    15·1 answer
  • Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating
    15·1 answer
  • 4+2y&lt;18 help please
    13·1 answer
  • What is 2 divide 74
    12·1 answer
  • What is a square root inequality?
    12·2 answers
  • Factor each<br> x^3 +2x^2 -4x -8 =0
    13·2 answers
  • On a recent test, Ahmed knew many of the answers, but there were four questions he was unsure of. In each of the four questions,
    9·1 answer
  • HELLLLLLLLLLLLLLLLLLLLLLLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP!!!!!!!!!!!!!!!!!!!!!!!!!
    8·1 answer
  • 2.4x-9 &lt; 1.8x+6 solve the inequality
    7·1 answer
  • miranda types at a rate of 48 words per minute. which equation describes how long it will take her to type a 3000 word essay?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!