Answer: The correct line is

Step-by-step explanation: We are given the following two sets of quadratic expressions in various forms:

We are to select one of the lines from above that represent three equivalent expressions.
We can see that there are three different forms of a quadratic expression in each of the lines:
First one is the simplified form, second is the factorised form and third one is the vertex form.
So, to check which line is correct, we need to calculate the factorised form and the vertex form from the simplified form.
We have

and

So,

Thus, Line 1 contains three equivalent expressions.
Now,

and

So,

Thus, Line 2 does not contain three equivalent expressions.
Hence, Line 1 is correct.
Answer: $2405
Step-by-step explanation: explanation is in the attached picture file
By definition we have the following equation:
t = d / v
Where,
t: time
d: distance
v: speed
For this case we have:
d / 30 + d / 4 = 17
Rewriting we have:
2d + 15d = 17 (60)
17d = 17 (60)
d = 60 mi
Then, the walking time is
t = d / v
t = 60/4
t = 15 hours
Answer:
She walked
t = 15 hours
Answer:
yes wait im doing it. do I put them un order
Answer:
The bottom cutoff heights to be eligible for this experiment is 66.1 inches.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Mean of 69.0 inches and a standard deviation of 2.8 inches.
This means that 
What is the bottom cutoff heights to be eligible for this experiment?
The bottom 15% are excluded, so the bottom cutoff is the 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.




The bottom cutoff heights to be eligible for this experiment is 66.1 inches.