Answer: Yes
Explanation:
Carrying capacity can be defined as the total number of members of the population of a species that an ecosystem can sustain in terms of providing resources in the form of food, shelter and others. When the resources are available in surplus then the population of a species increases exponentially but declines when resources become scarce. The human population is increasing tremendously all over the world this is supported by the resources like food, water, fossil fuels, air, minerals, and others. But some of these resources are decreasing due to overuse and may not be available in future to sustain the future generation.
Answer:
Explanation:
Normally, under anaerobic condition in yeast, pyruvate produced from glycolysis leads to the production of ethanol as shown below.
pyruvate ⇒ acetaldehyde + NADH ⇒ ethanol + NAD
The pyruvate is converted to acetaldehyde by the enzyme, pyruvate decarboxylase. It should be NOTED that carbon dioxide is released in this step. The acetaldehyde produced in the "first step" is then converted to ethanol by the enzyme alcohol dehydrogenase. It must be noted from the above that the steps are irreversible.
If a mutated strain of yeast is unique because it does not produce alcohol and lactic acid (which is referred to as toxic acid in the question); thus having a high level of pyruvate because of the presence of a novel enzyme. <u>The function of this novel enzyme will most likely be the conversion of acetaldehyde in the presence of carbondioxide back to pyruvate; thus making that step reversible</u>. This could be a possible explanation for the high level of pyruvate present in the yeast.
Mitochondria is the correct answer
Answer:
I found this from someone else. This is not my work, Also if this does not answer the question ask the question on here and you can see more answers. hope this helps.!
Explanation:
According to National Geographic, ostriches are a part of a very small group of birds that cannot fly because unlike most birds, their small wings are not strong enough to carry their body for flight and their breastbone isn't balanced enough for flying. Birds that are unable to fly are called ratites.
A number of scientists namely Thomas Huxley, Richard Owen, and others have tried to show that these ratites are actually related to each other and eventually, it was discovered that they all had one thing in common, the way the bones at the roof of the mouth were arranged was similar to that of reptiles rather than other birds.
Richard Owen found and assembled the remains of an extinct ostrich skeleton which was an extinct moa and contrary to already held opinion, one ratite known as tinamous did not really fit with the profile of a ratite because it could fly, even though almost grudgingly and they possessed keeled sternum which suggests that they evolved from flying birds.
DNA tests showed that tinamous evolved within ratites and not necessarily as a separate entity. The tests also showed that moas and tinamous are related.
It was also speculated that the division of the supercontinent Pangaea southern side led to the separation of flightless ratite ancestors, causing each landlocked group to evolve and become the flightless birds we know today such as the ostrich, rheas, etc.
Answer:
a. salivary amylase
Explanation:
salivary amylase breaks down starches (complex carbohydrates) into sugars for the body to absorb more efficiently.