Answer:
a) 658008 samples
b) 274050 samples
c) 515502 samples
Step-by-step explanation:
a) How many ways sample of 5 each can be selected from 40 is just a combination problem since the order of selection isn't important.
So, the number of samples = ⁴⁰C₅ = 658008 samples
b) How many samples of 5 contain exactly one nonconforming chip?
There are 10 nonconforming chips in the batch, and 1 nonconforming chip for the sample of 5 be picked from ten in the following number of ways
¹⁰C₁ = 10 ways
then the remaining 4 conforming chips in a sample of 5 can be picked from the remaining 30 total conforming chips in the following number of ways
³⁰C₄ = 27405 ways
So, total number of samples containing exactly 1 nonconforming chip in a sample of 5 = 10 × 27405 = 274050 samples
c) How many samples of 5 contain at least one nonconforming chip?
The number of samples of 5 that contain at least one nonconforming chip = (Total number of samples) - (Number of samples with no nonconforming chip in them)
Number of samples with no nonconforming chip in them = ³⁰C₅ = 142506 samples
Total number of samples = 658008
The number of samples of 5 that contain at least one nonconforming chip = 658008 - 142506 = 515502 samples
11/3 - 2/3 = 9/3 = 3 so he spent 3 more hours reading on saturday than on friday
Hope this helps!
Answer:
the radius is 10 since 10 plus ten is 20
1)
n 1 2 3 4 5 6
f(n) 1033 932 831 730 629 528
First term (a₁): <u>1033 </u> Common difference (d): <u>-101 </u>
Explicit rule:
Recursive rule: 




***********************************************************************************
2)
n 1 2 3 4 5 6
f(n) -39 -29 -19 -9 9 19
First term (a₁): <u> -39 </u> Common difference (d): <u> +10 </u>
Explicit rule:
Recursive rule: 




***********************************************************************************
3)
n 1 2 3 4 5 6
f(n) 3.75 2.5 1.25 0 -1.25 -2.5
First term (a₁): <u> 3.75 </u> Common difference (d): <u> -1.25 </u>
Explicit rule:
Recursive rule: 



