Answer:

Step-by-step explanation:
The populational growth is exponential with a factor of 1.12 each year. An exponential function has the following general equation:

Where 'a' is the initial population (25,000 people), 'b' is the growth factor (1.12 per year), 'x' is the time elapsed, in years, and 'y(x)' is the population after 'x' years.
Therefore, the function P(t) that models the population in Madison t years from now is:
You can buy 4 shirts because you bought one pair of jean (80 - 29 = 51) and so with the leftover money you could buy 4 shirts because (12 x 4 = 48) and then you'd have a leftover 3 dollars.
Since we are already given the amount of jumps from the first trial, and how much it should be increased by on each succeeding trial, we can already solve for the amount of jumps from the first through tenth trials. Starting from 5 and adding 3 each time, we get: 5 8 (11) 14 17 20 23 26 29 32, with 11 being the third trial.
Having been provided 2 different sigma notations, which I assume are choices to the question, we can substitute the initial value to see if it does match the result of the 3rd trial which we obtained by manual adding.
Let us try it below:
Sigma notation 1:
10
<span> Σ (2i + 3)
</span>i = 3
@ i = 3
2(3) + 3
12
The first sigma notation does not have the same result, so we move on to the next.
10
<span> Σ (3i + 2)
</span><span>i = 3
</span>
When i = 3; <span>3(3) + 2 = 11. (OK)
</span>
Since the 3rd trial is a match, we test it with the other values for the 4th through 10th trials.
When i = 4; <span>3(4) + 2 = 14. (OK)
</span>When i = 5; <span>3(5) + 2 = 17. (OK)
</span>When i = 6; <span>3(6) + 2 = 20. (OK)
</span>When i = 7; 3(7) + 2 = 23. (OK)
When i = 8; <span>3(8) + 2 = 26. (OK)
</span>When i = 9; <span>3(9) + 2 = 29. (OK)
</span>When i = 10; <span>3(10) + 2 = 32. (OK)
Adding the results from her 3rd through 10th trials: </span><span>11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 = 172.
</span>
Therefore, the total jumps she had made from her third to tenth trips is 172.
4x+6<-6
-6 -6
-------------
4x<-12
Then you divide 4x on both sides so 4x divided by 4x and -12 divided by 4x. When dividing this the 4 isnt a negative so you dont flip the "<" so it stays the same. The answer would be x<-3
Answer:
Step-by-step explanation:
-3 = 2x+6y
2x+6y = 0
By transitivity, -3 = 0, a contradiction. No solution.
If you graph the lines, you will see they are parallel, therefore never intersect.