1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
13

Simplify the following expression: Sqrt (-16) + sqrt(-25+5)

Mathematics
1 answer:
Studentka2010 [4]3 years ago
7 0

Answer:

(4 + 2√5) i

Step-by-step explanation:

√(-16) + √(-25 + 5)

√(-16) + √(-20)

4i + 2i√5

(4 + 2√5) i

You might be interested in
Mapoela walks 2 km 30 minutes. At that rate, how far could she walk in 1 ½ hours​
kogti [31]

Answer:

5

Step-by-step explanation:

2=30 so 30= 1/2 or an hour so 2+2=4 witch makes an gour half of 2 is 1 so it would make 5

4 0
2 years ago
How do u write the problem
mr Goodwill [35]
I don’t know ‍♀️ I am very sorry
4 0
3 years ago
What is the length of the curve with parametric equations x = t - cos(t), y = 1 - sin(t) from t = 0 to t = π? (5 points)
zzz [600]

Answer:

B) 4√2

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Parametric Differentiation

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Arc Length Formula [Parametric]:                                                                         \displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \left \{ {{x = t - cos(t)} \atop {y = 1 - sin(t)}} \right.

Interval [0, π]

<u>Step 2: Find Arc Length</u>

  1. [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:         \displaystyle \left \{ {{x' = 1 + sin(t)} \atop {y' = -cos(t)}} \right.
  2. Substitute in variables [Arc Length Formula - Parametric]:                       \displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx
  3. [Integrand] Simplify:                                                                                       \displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx
  4. [Integral] Evaluate:                                                                                         \displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}

Topic: AP Calculus BC (Calculus I + II)

Unit: Parametric Integration

Book: College Calculus 10e

4 0
3 years ago
The function in Exercise represents the rate of flow of money in dollars per year. Assume a 10-year period at 8% compounded cont
anzhelika [568]

Answer:

a) The present value is 688.64 $

b) The accumulated amount is 1532.60 $

Step-by-step explanation:

<u>a)</u><u> The preset value equation is given by this formula:</u>

P=\int^{T}_{0}f(t)e^{-rt}dt

where:

  • T is the period in years (T = 10 years)
  • r is the annual interest rate (r=0.08)

So we have:

P=\int^{T}_{0}(0.01t+100)e^{-rt}dt

Now we just need to solve this integral.

P=\int^{T}_{0}0.01te^{-rt}dt+\int^{T}_{0}100e^{-rt}dt

P=e^{-0.08t}(-1.56-0.13t)|^{10}_{0}+1250e^{-0.08t}|^{10}_{0}

P=0.30+688.34=688.64 $

The present value is 688.64 $

<u>b)</u><u> The accumulated amount of money flow formula is:</u>

A=e^{r\tau}\int^{T}_{0}f(t)e^{-rt}dt

We have the same equation but whit a term that depends of τ, in our case it is 10.

So we have:

A=e^{r\tau}\int^{T}_{0}(0.01t+100)e^{-rt}dt=e^{0.08\cdot 10}P

A=e^{0.08\cdot 10}688.64=1532.60 $

The accumulated amount is 1532.60 $

Have a nice day!

6 0
3 years ago
What is the line of the slope shown below
andrezito [222]

Answer:

3

Step-by-step explanation:

  • \frac{-3-6}{2--1}=\frac{-9}{3}=3
4 0
2 years ago
Read 2 more answers
Other questions:
  • In one month, Jillian made 36 local phone calls and 20 long distance calls. What was her ratio of local calls to long distance c
    10·1 answer
  • Can an obtuse triangle have a right angle? why or why not?
    6·1 answer
  • Helpppppp meeeeee plzzzzzzz!!!!!
    12·1 answer
  • Please answer this correctly
    15·1 answer
  • Find the regular price. Round to the nearest cent . Sales price is 56.78 percent discount is 40%
    11·1 answer
  • For the table below, what is the range?
    6·1 answer
  • What 2 numbers multiply to -36 and add to 16​
    8·1 answer
  • Solve please it's easyyy
    15·2 answers
  • In a class of 75 students, 50 of them are girls and 25 of them are boys. What percentage are girls?
    8·1 answer
  • I need help w this pls
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!