We have the following expression:
17 ^ (3/5)
We rewrite the expression.
We have then:
a ^ root (17 ^ b)
Where, for this case:
a = 5
b = 3
Substituting:
5 ^ root (17 ^ 3)
Answer:
the value of B is:
b = 3
Answer:
1. 8+<u>9</u>=9+8
2. 12+<u>0</u>=12
3.5(3+8)=<u>15</u>+40
Step-by-step explanation:
The area of the sector rounded to 4 decimal place is 78.6396 cm²
<h3 /><h3>How to find the area of a sector?</h3>
area of sector = ∅/ 360 × πr²
Therefore,
Hence,
area of a sector = 46 / 360 × 3.14 × 14²
area of a sector = 46 / 360 × 3.14 × 196
area of a sector = 46 / 360 × 615.44
area of a sector = 28310.24 / 360
area of a sector = 78.6395555556
Hence,
area of a sector = 78.6396 cm²
learn more on sector here: brainly.com/question/27946869
#SPJ1
Hey ! there
Answer:
- <u>1</u><u>1</u><u>3</u><u>.</u><u>0</u><u>4</u><u> </u><u>unit </u><u>cube</u>
Step-by-step explanation:
In this question we are provided with a sphere <u>having</u><u> </u><u>radius </u><u>3 </u><u>units </u>and <u>value </u><u>of </u><u>π </u><u>is </u><u>3.</u><u>1</u><u>4</u><u> </u><u>.</u><u> </u>And we're asked to find the<u> </u><u>volume</u><u> of</u><u> </u><u>sphere</u><u> </u><u>.</u>
For finding volume of sphere , we need to know its formula . So ,

<u>Where</u><u> </u><u>,</u>
- π refers to <u>3.</u><u>1</u><u>4</u>
- r refers to <u>radius</u><u> of</u><u> sphere</u>
<u>Sol</u><u>u</u><u>tion </u><u>:</u><u> </u><u>-</u>
Now , we are substituting value of π and radius in the formula ,

Simplifying it ,

Cancelling 3 with 3 :

We get ,

Multiplying 4 and 3.14 :

Multiplying 12.56 and 9 :

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>sphere</u><u> </u><u>having </u><u>radius </u><u>3 </u><u>units </u><u>is </u><em><u>1</u></em><em><u>1</u></em><em><u>3</u></em><em><u> </u></em><em><u>.</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>units </u></em><em><u>cube </u></em><em><u>.</u></em>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Answer:
The answer is 8 : 22, 12:33 as they are two equelivant ratios 11 and 4