1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
3 years ago
12

The graph of the parent function f(x) = x is transformed such that g(x) = f(-2x). How does the graph of g(x) compare to the

Mathematics
1 answer:
Verdich [7]3 years ago
3 0

Answer:

  • reflected across the y-axis
  • compressed by a factor of 2

Step-by-step explanation:

Replacing x by -x in f(x) causes it to be reversed horizontally, that is, reflected across the y-axis.

Replacing x by 2x in f(x) causes it to be compressed horizontally by a factor of 2.

Both of these transformations result in g(x) being a horizontally compressed horizontal reflection of f(x).

__

See the attachment for an example. The blue curve is g(x); the red curve is f(x).

You might be interested in
If m YXW=18°, YW=6, and WZ=6, what is ZXY?
MA_775_DIABLO [31]

Answer:

18°

Step-by-step explanation:

It would also be 18 degrees

4 0
3 years ago
Simplify. Explain your steps
patriot [66]
8/9 / 2/10
Put in decimal form
.89 / .2 = 4.444 = 40/9

4 0
4 years ago
Order 1.09,1.9,and 1.1 from least to greatest
zysi [14]
1.09, 1.1, 1.9 Hope I helped
6 0
3 years ago
Read 2 more answers
25.(01.05)
yKpoI14uk [10]
105 but I need 20 characters to
8 0
3 years ago
Read 2 more answers
Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit i
jenyasd209 [6]

Answer:

If the limit that you want to find is \lim_{x\to \infty}\dfrac{P(x)}{Q(x)} then you can use the following proof.

Step-by-step explanation:

Let P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} and Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0} be the given polinomials. Then

\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}

Observe that

\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}

and

\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}

Then

\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}

3 0
3 years ago
Other questions:
  • On July 1, a golfer hit 30 golf balls in her backyard net. On July 2, she hit
    13·1 answer
  • Part 2. Identify whether the red figure is a translation or rotation of the black figure​
    13·1 answer
  • Los puntos A (5, 3) y B (-3, -3) representan los extremos de un trozo de madera que será usado por un carpintero para elaborar u
    11·1 answer
  • Identify the maximum value of the function y = -6x^2- 12x - 1
    11·2 answers
  • (20 Points)
    8·1 answer
  • A bank has 23 employees. 3 employees get paid $20.93 an hour. 7 employees get paid $19.68 per hour. The other 13 get paid $23.00
    12·1 answer
  • Qs bisect PQR and MRSQ =71
    6·1 answer
  • A car can go 35 1/2 miles in 1 1/2 miles gallons. How many gallons does a car need to go 639 miles?
    12·1 answer
  • Which of the following is equivalent to 3^-8 × 3^4 <br> 3^-4<br> 3^-2<br> 3^-12<br> 3^-32
    5·1 answer
  • Add polynomials (intro) Add. Your answer should be an expanded polynomial in standard form. (3x^3 + 4x²) + (3x^3 – 4x^2 – 9x) =
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!