1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
3 years ago
12

Which of the equations below could be the equation of this parabola?

Mathematics
1 answer:
nirvana33 [79]3 years ago
7 0

Answer:

 y=-4x^2  is the equation of this parabola.

Step-by-step explanation:

Let us consider the equation

y=-4x^2

\mathrm{Domain\:of\:}\:-4x^2\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:

\mathrm{Range\:of\:}-4x^2:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:0]\end{bmatrix}

\mathrm{Axis\:interception\:points\:of}\:-4x^2:\quad \mathrm{X\:Intercepts}:\:\left(0,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:0\right)

As

\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=a\left(x-m\right)\left(x-n\right)

\mathrm{is\:the\:average\:of\:the\:zeros}\:x_v=\frac{m+n}{2}

y=-4x^2

\mathrm{The\:parabola\:params\:are:}

a=-4,\:m=0,\:n=0

x_v=\frac{m+n}{2}

x_v=\frac{0+0}{2}

x_v=0

\mathrm{Plug\:in}\:\:x_v=0\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}

y_v=-4\cdot \:0^2

y_v=0

Therefore, the parabola vertex is

\left(0,\:0\right)

\mathrm{If}\:a

\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}

a=-4

\mathrm{Maximum}\space\left(0,\:0\right)

so,

\mathrm{Vertex\:of}\:-4x^2:\quad \mathrm{Maximum}\space\left(0,\:0\right)

Therefore,  y=-4x^2  is the equation of this parabola. The graph is also attached.

You might be interested in
The edges of a cube increase at a rate of 2 cm divided by s. How fast is the volume changing when the length of each edge is 40
Dmitry_Shevchenko [17]

Answer:

Step-by-step explanation:

Let the edge of the cube be a .

Given

\frac{da}{dt} = 2 cm/s

Volume V = a³

\frac{dV}{dt} = 3a^ 2\frac{da}{dt}

= 3a² x 2

= 6a²

If a = 40 cm

\frac{dV}{dt} = 6 \times 40\times40

= 9600 cm³/s .

5 0
3 years ago
Here's the question. ​
OleMash [197]

Answer:

The value of T₂₀ - T₁₅ is <u>-20</u>.

Step-by-step explanation:

<u>Given</u> :

  • >> If for an A.P, d = -4

<u>To</u><u> </u><u>Find</u> :

  • >> T₂₀ - T₁₅

<u>Using Formula</u> :

General term of an A.P.

\star{\small{\underline{\boxed{\sf{\red{ T_n = a  + (n - 1)d}}}}}}

  • >> Tₙ = nᵗʰ term
  • >> a = first term
  • >> n = no. of terms
  • >> d = common difference

<u>Solution</u> :

Firstly finding the A.P of T₂₀ by substituting the values in the formula :

{\dashrightarrow{\pmb{\sf{ T_n = a  + (n - 1)d}}}}

{\dashrightarrow{\sf{ T_{20} = a  + (20 - 1) d}}}

{\dashrightarrow{\sf{ T_{20} = a  + (19)d}}}

{\dashrightarrow{\sf{ T_{20} = a  + 19  \times d}}}

{\dashrightarrow{\sf{ T_{20} = a  + 19d}}}

{\star \: {\underline{\boxed{\sf{\pink{ T_{20} = a  + 19d}}}}}}

Hence, the value of T₂₀ is a + 19d.

\rule{190}1

Secondly, finding the A.P of T₁₅ by substituting the values in the formula :

{\dashrightarrow{\pmb{\sf{ T_n = a  + (n - 1)d}}}}

{\dashrightarrow{\sf{ T_{15}= a  + (15 - 1) d}}}

{\dashrightarrow{\sf{ T_{15}= a  + (14) d}}}

{\dashrightarrow{\sf{ T_{15}= a  + 14 \times d}}}

{\dashrightarrow{\sf{ T_{15}= a  + 14d}}}

{\star{\underline{\boxed{\sf \pink{ T_{15}= a  + 14d}}}}}

Hence, the value of T₁₅ is a + 14d

\rule{190}1

Now, finding the difference between T₂₀ - T₁₅ :

{\dashrightarrow{\pmb{\sf{T_{20} -  T_{15}}}}}

{\dashrightarrow{\sf{(a + 19d) -  (a + 14d)}}}

{\dashrightarrow{\sf{a + 19d -  a  -  14d}}}

{\dashrightarrow{\sf{a - a + 19d -  14d}}}

{\dashrightarrow{\sf{0+ 19d -  14d}}}

{\dashrightarrow{\sf{19d -  14d}}}

{\dashrightarrow{\sf{5 \times  - 4}}}

{\dashrightarrow{\sf{ - 20}}}

{\star \: \underline{\boxed{\sf{\pink{T_{20} -  T_{15} =  - 20}}}}}

Hence, the value of T₂₀ - T₁₅ is -20.

\underline{\rule{220pt}{3.5pt}}

3 0
2 years ago
Please help!!!!!!!!!!!
Temka [501]

9514 1404 393

Answer:

  (d)  h = 2A/b

Step-by-step explanation:

Multiply both sides of the equation by the inverse of the coefficient of h.

  A = \dfrac{1}{2}bh=\dfrac{b}{2}\cdot h\\\\\dfrac{2}{b}\cdot A=h\\\\\boxed{h=\dfrac{2A}{b}}

4 0
3 years ago
Let f(x) = -3x and g(x) = 2x-1<br> Find the following:<br> (fog)(1)
Luba_88 [7]

Step-by-step explanation:

steps are in picture above.

<u>N</u><u>o</u><u>t</u><u>e</u><u> </u><u>:</u><u> </u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>h</u><u>a</u><u>v</u><u>e</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>c</u><u>o</u><u>n</u><u>f</u><u>u</u><u>s</u><u>i</u><u>o</u><u>n</u><u> </u><u>l</u><u>e</u><u>t</u><u> </u><u>m</u><u>e</u><u> </u><u>know</u><u>.</u>

6 0
3 years ago
Read 2 more answers
What is the solution to q/-7=6?
marta [7]

Answer:

q in (-oo:+oo)

q/(-7) = 6 // - 6

q/(-7)-6 = 0

-1/7*q-6 = 0 // + 6

-1/7*q = 6 // : -1/7

q = 6/(-1/7)

q = -42

q = -42

Hope I was helpful! :)

5 0
3 years ago
Other questions:
  • Can someone please explain what and how to do this. i don’t get it.
    15·2 answers
  • How much of a tip do i give for 14 dollars
    13·1 answer
  • Two quantities are related, as shown in the table:
    9·1 answer
  • Suppose a coin is flipped 10,000 times.what is a reasonable prediction for the number of times the coin lands on tails
    12·2 answers
  • Answer this question !!!!!!!!!!!!!!!!!
    15·2 answers
  • Use a number line to solve 235+123
    14·2 answers
  • A model rocket is launched into the air from ground level.
    14·1 answer
  • Find the slope (m) of the line
    15·2 answers
  • The legs of an isosceles right triangle are 20 cm long. Find the length of the hypotenuse. Round to the nearest tenth if necessa
    9·1 answer
  • Do anyone want to help me with this one if not its ok.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!