<h2>Galapagos Finch </h2>
Explanation:
Darwin's finches are a classical example of an adaptive radiation
- Darwin's finches common ancestor arrived on the Galapagos about two million years ago,during the time that has passed the Darwin's finches have evolved into 15 recognized species differing in body size, beak shape, song and feeding behavior
- Changes in size and form of the beak have enabled different species to utilize different food resources such us insects, seeds, nectar from cactus flowers all driven by Darwinian selection
- From 1831 to 1836, Darwin was part of a survey expedition carried out by the ship HMS Beagle, which included stops in South America, Australia, and the southern tip of Africa
- At each of the stop, Darwin had the opportunity to study the local plants and animals
- Darwin found that nearby islands in the Galapagos had similar but nonidentical species of finches living on them,he noted that each finch species was well-suited for its environment and role
- For example species that ate large seeds tended to have large, tough beaks, while those that ate insects had thin, sharp beaks
- According to Darwin's idea, this pattern would make sense if the Galapagos Islands had long ago been populated by birds from the neighboring mainland
- On each island, the finches might have gradually adapted to local conditions (over many generations and long periods of time)
- This process could have led to the formation of one or more distinct species on each island
- Darwin developed and refined a set of ideas that could explain the patterns he had observed during his voyage
- In his book, On the Origin of Species, Darwin outlined his two key ideas: evolution and natural selection
- Natural selection which also known as “survival of the fittest,” is the more prolific reproduction of individuals with favorable traits that survive environmental change because of those traits; this leads to evolutionary change
Answer:
The possible fate of the cell that it may turn cancerous.
Explanation:
The cells present in the body generally work in harmony. However, if a cell attains a mutation, it can make it proliferate in the case when it should not do, and make it thrive in the case when other cells are dying. Due to proliferation, the unusual cell produces more abnormal cells also known as cancerous cells. These cancerous cells become more favorable in comparison to the normal cells due to the phenomenon of natural selection. These cells eventually result in a lethal form of tumors.
In the normal cells, the destructed gene or the damaged cells get repaired easily, in case if the damage is worse the cell dies. A protein known as p53 helps in repairing damaged cells or kills them if the damage is too severe. But in the case of cancer cells, the p53 protein does not work appropriately as they possess a mutated or changed form of p53 protein. Thus, in the case of cancerous cells, the rate of repair lags behind the rate of mutation, which makes the cancer cells thrive and increase in numbers resulting in further destruction.
Answer:
Please put this question in English and I would then love to help you. Thanks.
Answer:
5-10 days to get to the waking faze
Galapagos species are among those populations whose
members do not interbreed. The reasons that keep them from mating is that they
are separated due to differences in songs and beaks, individuals only recognize
and respond to songs of their own species. Therefore, geographic isolation and different
environments led to changes in traits that affected mating.
<span> </span>