Option 1 - StartFraction n Over 2 EndFraction minus 6 + 10; when n = 8, the value is 8.
Step-by-step explanation:
Given : Expression "six less than the quotient of a number and two, increased by ten".
To find : What is the expression and value of expression when n = 8?
Solution :
Let the number be 'n'.
The quotient of a number and two i.e. ![\frac{n}{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D)
Six less than the quotient of a number and two i.e. ![\frac{n}{2}-6](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D-6)
Six less than the quotient of a number and two, increased by ten i.e. ![\frac{n}{2}-6+10](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D-6%2B10)
The required expression is
.
Now, when n=8,
![\frac{n}{2}-6+10=\frac{8}{2}-6+10](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D-6%2B10%3D%5Cfrac%7B8%7D%7B2%7D-6%2B10)
![\frac{n}{2}-6+10=4-6+10](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D-6%2B10%3D4-6%2B10)
![\frac{n}{2}-6+10=8](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D-6%2B10%3D8)
The value of the expression is 8.
Therefore, option 1 is correct.
StartFraction n Over 2 EndFraction minus 6 + 10; when n = 8, the value is 8.