Answer:
A. 40x + 10y + 10z = $160
B. 8 Roses, 2 lilies and 2 irises
C.
1. 20x + 5y + 5z = $80
2. 4x + y + z = $16
3. 8x + 2y + 2z = $32
Step-by-step explanation:
Cost for each flower = $160/5 = $32
So we have $32 for each bouquet consisting of 12 flowers each.
Roses = x = $2.50 each
lilies = y = $4 each
irises = z = $2 each
8x + 2y + 2z = $32
8($2.50) + 2($4) + 2($2) = $32
$20 + $8 + $4 = $32
$32 = $32
a. Maximum budget is $160
40x + 10y + 10z = $160
40($2.50) + 10($4) + 10($2) = $160
$100 + $40 + $20 = $160
$160 = $160
b. From above
8x + 2y + 2z = $32
8 Roses, 2 lilies and 2 irises
c. No. There are other solutions If total cost is not limited
1. 20x + 5y + 5z
20($2.50) + 5($4) + 5($2)
$50 + $20 + $10
= $80
2. 4x + y + z
4($2.50) + $4 + $2
$10 + $4 + $2
= $16
3. 8x + 2y + 2z
8($2.50) + 2($4) + 2($2)
$20 + $8 + $4
= $32
Using the median concept, it is found that the interquartile range of Sara's daily miles is of 21 miles.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
- The interquartile range is the difference of the quartiles.
The ordered data-set is given as follows:
65, 72, 86, 88, 91, 93, 97
There are 7 elements, hence the median is the 4th element, of 88. Then:
- The first half is 65, 72, 86.
- The second half is 91, 93, 97.
Since the quartiles are the medians of each half, the have that:
- The first quartile is of 72 miles.
- The third quartile is of 93 miles.
- The interquartile range is of 93 - 72 = 21 miles.
More can be learned about the median of a data-set at brainly.com/question/3876456
#SPJ1
216. hope this helps you.
Answer:
uhm 5?
Step-by-step explanation:
because 3 we move 1 more is 4.
and 7 we go -1 which is 6 so we have 5 in the middle so the answer is 5!
Answer:
1/3
Step-by-step explanation:
When working with balanced expressions (stuff on both sides of the equal sign), "what you do to one side, you do to the other", which keeps it balanced.
The first thing we notice is the exponent 1/4, which is one both sides, so we can get rid of it on both sides by using the <u>reverse operation</u>.
The reverse of exponents is <u>square root</u>.
![(4x + 10)^{\frac{1}{4}} = (9 + 7x)^{\frac{1}{4}}\\\sqrt[\frac{1}{4}]{(4x + 10)^{\frac{1}{4}}} = \sqrt[\frac{1}{4}]{(9 + 7x)^{\frac{1}{4}}}\\\\4x + 10 = 9 + 7x](https://tex.z-dn.net/?f=%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%3D%20%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%20%3D%20%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5C%5C%5C%5C4x%20%2B%2010%20%3D%209%20%2B%207x)
Isolate x to solve. Separate the variables and non-variables.
4x + 10 = 9 + 7x
4x - 4x + 10 = 9 + 7x - 4x Subtract 4x from both sides
10 = 9 + 3x
10 - 9 = 9 - 9 + 3x Subtract 9 from both sides
1 = 3x Divide both sides by 3 to isolate x
x = 1/3 Answer