Answer:

Step-by-step explanation:
This is a conditional probability exercise.
Let's name the events :
I : ''A person is infected''
NI : ''A person is not infected''
PT : ''The test is positive''
NT : ''The test is negative''
The conditional probability equation is :
Given two events A and B :
P(A/B) = P(A ∩ B) / P(B)

P(A/B) is the probability of the event A given that the event B happened
P(A ∩ B) is the probability of the event (A ∩ B)
(A ∩ B) is the event where A and B happened at the same time
In the exercise :



We are looking for P(I/PT) :
P(I/PT)=P(I∩ PT)/ P(PT)

P(PT/I)=P(PT∩ I)/P(I)
0.904=P(PT∩ I)/0.025
P(PT∩ I)=0.904 x 0.025
P(PT∩ I) = 0.0226
P(PT/NI)=0.041
P(PT/NI)=P(PT∩ NI)/P(NI)
0.041=P(PT∩ NI)/0.975
P(PT∩ NI) = 0.041 x 0.975
P(PT∩ NI) = 0.039975
P(PT) = P(PT∩ I)+P(PT∩ NI)
P(PT)= 0.0226 + 0.039975
P(PT) = 0.062575
P(I/PT) = P(PT∩I)/P(PT)

Answer:
x≤9
Step-by-step explanation:
9+2x≤27
1) Subtract both sides by 9:
2x≤18
2) Divide both sides by 2:
x≤9
Divide 7% into $240 dollars and hat should get you your answer.
hope this helps!
Answer:
This cannot be solved but it can be simplified
first we open the bracket
so we have
a²- abx/x = 2/3
next we cross multiply so it will be 3(a² - abx) = 2x
we get
3a² - 3abx = 2x
Next we factorise so we can get
3a(a-bx) =2x
I dont know what exactly you where asked but I hop this helps
C is the correct answer I think