Using the midpoint formula, the coordinates of endpoint H are (4, -6).
<h3>The Midpoint Formula</h3>
The midpoint formula is given as: ![(x_m, y_m) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} )](https://tex.z-dn.net/?f=%28x_m%2C%20y_m%29%20%3D%20%28%5Cfrac%7Bx_1%20%2B%20x_2%7D%7B2%7D%2C%20%5Cfrac%7By_1%20%2B%20y_2%7D%7B2%7D%20%29)
<em>Where</em>,
= coordinates of the midpoint
= coordinates of the first point
= coordinates of the second point
Given the following:
= M( 6,-4)
= G(8,-2)
= H(?, ?)
Plug in the values into the midpoint formula
![M(6, -4) = (\frac{8 + x_2}{2}, \frac{-2 + y_2}{2} )](https://tex.z-dn.net/?f=M%286%2C%20-4%29%20%3D%20%28%5Cfrac%7B8%20%2B%20x_2%7D%7B2%7D%2C%20%5Cfrac%7B-2%20%2B%20y_2%7D%7B2%7D%20%29)
Solve for the x-coordinate and y-coordinate separately
![6 = \frac{8 + x_2}{2}](https://tex.z-dn.net/?f=6%20%3D%20%5Cfrac%7B8%20%2B%20x_2%7D%7B2%7D)
![6 \times 2 = 8 + x_2\\\\12 = 8 + x_2\\\\12 - 8 = x_2\\\\4 = x_2\\\\\mathbf{x_2 = 4}](https://tex.z-dn.net/?f=6%20%5Ctimes%202%20%3D%208%20%2B%20x_2%5C%5C%5C%5C12%20%3D%208%20%2B%20x_2%5C%5C%5C%5C12%20-%208%20%3D%20x_2%5C%5C%5C%5C4%20%3D%20x_2%5C%5C%5C%5C%5Cmathbf%7Bx_2%20%3D%204%7D)
![-4 = \frac{-2 + y_2}{2}\\\\-8 = -2 + y_2\\\\-8 + 2 = y_2\\\\-6 = y_2\\\\\mathbf{y_2 = -6}](https://tex.z-dn.net/?f=-4%20%3D%20%5Cfrac%7B-2%20%2B%20y_2%7D%7B2%7D%5C%5C%5C%5C-8%20%3D%20-2%20%2B%20y_2%5C%5C%5C%5C-8%20%2B%202%20%3D%20y_2%5C%5C%5C%5C-6%20%3D%20y_2%5C%5C%5C%5C%5Cmathbf%7By_2%20%3D%20-6%7D)
Therefore, using the midpoint formula, the coordinates of endpoint H are (4, -6).
Learn more about midpoint formula on:
brainly.com/question/13115533
Yes, 0.069 is less than 0.07~
First, we compare the "one" place: 0 = 0.
Second, we compare the "tenth" place: 0 = 0.
Next, we compare the "hundredth" place: 6 < 7.
Because 6 < 7, 0.069 < 0.07 as a result~
Answer:
p=4
Step-by-step explanation:
If general form means y=mx+b form then your answer would be B