1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
3 years ago
8

You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov

e with a speed of 340 m/s. (a) Determine the frequency with which the waves strike the hill. (b) What is the frequency of the reflected sound waves you hear? (c) What is the beat frequency produced by the direct and the reflected sounds at your ears?
Physics
1 answer:
Marina CMI [18]3 years ago
3 0

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

You might be interested in
Elements from opposite sides of the periodic table tend to form ________.
Ivenika [448]
Ionic compounds is your answer. What happens is one atom donates electron(s) to the other atom, making one positive and the other negative. The opposite atoms attract, forming an ionic bond. 

Hope this helps! :)
4 0
3 years ago
3. The pressure at the bottom of the ocean is great enough to crush submarines with steel walls that are 10 centimeters thick. S
Elden [556K]

Answer:

just awnsered this one your awnser is the the second option

3 0
3 years ago
Read 2 more answers
A rug sits in a sunny place on the floor for a long time. Kiara thinks that light from the sun can cause the rug's color to fade
geniusboy [140]

Answer:

Yes! Light from the sun can affect the materials certain carpets are made out of. The usual effect being the dye in the carpet being "washed out" or "dried out" as the sun beams down on it. When this happens, the carpet will usually lose its color, causing it to fade.

3 0
3 years ago
Why should it take significantly more energy to move a beam of alpha particles than a beam of beta minus (β–) particles?
a_sh-v [17]
An 'alpha particle' is the same thing as the nucleus of a helium atom ... 
a little bundle made of 2 protons and 2 neutrons.

A 'beta' particle is an electron.

The mass of an alpha particle is more than 7,000 times the mass of 
an electron, so it certainly takes more energy to get it moving.
4 0
3 years ago
Read 2 more answers
Read the information and study the image.
erastova [34]

Answer:

It is impossible to detect underground water from the surface. Dowsing practitioners refuse to explain their secrets.

Explanation:

4 0
3 years ago
Other questions:
  • A strong lightning bolt transfers an electric charge of about 31 C to Earth (or vice versa). How many electrons are transferred?
    15·1 answer
  • 20 points please give me correct answer ( brainliest will be reward)
    8·1 answer
  • Which of the following is a risk associated with texting?
    13·1 answer
  • The Bugatti Veyron requires 2.40 s to accelerate from 0 to 60.0 mi/h. Calculate the distance that the car would travel in the ti
    11·1 answer
  • On the surface of Earth, a spacecraft has a mass of 2.00 x 104 kilograms. What is the mass of the spacecraft at a distance of on
    15·1 answer
  • 3.113 A heat pump is under consideration for heating a research station located on Antarctica ice shelf. The interior of the sta
    7·1 answer
  • PLEASE HELP 50 pts + brainliest. 3. A laser light travels from air (n=1) through water (n=1.33), and then a piece of glass (n=1.
    9·1 answer
  • The airplane is flying with a constant velocity. Which force acting on the airplane below represents the friction from air resis
    8·2 answers
  • Suppose a log’s mass is 5 kg. After burning, the mass of the ash is 1 kg. What can you predict has happened to the other 4 kg?
    13·1 answer
  • Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!