1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
3 years ago
8

You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov

e with a speed of 340 m/s. (a) Determine the frequency with which the waves strike the hill. (b) What is the frequency of the reflected sound waves you hear? (c) What is the beat frequency produced by the direct and the reflected sounds at your ears?
Physics
1 answer:
Marina CMI [18]3 years ago
3 0

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

You might be interested in
The gas pressure inside a container decreases when
avanturin [10]

Answer:

When the volume increases or when the temperature decreases

Explanation:

The ideal gas equation states that:

pV= nRT

where

p is the gas pressure

V is the volume

n is the number of moles of gas

R is the gas constant

T is the gas temperature

Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

\frac{pV}{T}=const.

which means the following:

- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases

- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases

8 0
3 years ago
Determine the projection (magnitude and sign), or component, of vector v1 along the direction of vector v2. Your answer could be
professor190 [17]

Answer:

- 1.07 ft

Explanation:

V1 = (-5, 7, 2)

V2 = (3, 1, 2)

Projection of v1 along v2, we use the following formula

=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}

So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4

The magnitude of vector V2 is given by

= \sqrt{3^{2}+1^{2}+2^{2}}=3.74

So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft

Thus, the projection of V1 along V2 is - 1.07 ft.

so we need to find the direction of v2

7 0
3 years ago
In order to slide a heavy desk across the floor at constant speed in a straight line, you have to exert a horizontal force of 40
san4es73 [151]

Answer:

F = f from Newton’s first law.

Explanation:

since the desk is moved in a straight line at a constant speed, newton first law tell us that the two forces must be equal.

Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. since the table has been set in motion by the 400 N force, it will remain in motion unless it is been acted upon by an external force, and this means that the 400 N must be equal to the frictional force for it to have been in motion in the first instance.

3 0
4 years ago
Choose all the answers that apply. The sun: -is the largest star in our solar system -is the largest star in our galaxy
Hatshy [7]

-is made mostly of hydrogen and helium.

-will eventually run out of fuel and die.

-creates energy through nuclear reactions

8 0
3 years ago
Read 2 more answers
How long does it take the moon to go from full-moon phase to new-moon phase
Amiraneli [1.4K]
A complete cycle of phases is 29.531 days.
From full-moon to new-moon is half of that.
4 0
3 years ago
Other questions:
  • Suppose you want to operate an ideal refrigerator with a cold temperature of -10.0ºC , and you would like it to have a coefficie
    7·1 answer
  • Why did the magnitude of the doppler shift increase as the velocity of the sound source increased?
    5·2 answers
  • Which needs less heat to increase its temperature,
    6·2 answers
  • A car travels 2.5 hours in a northernly direction for 300 km. determine the cars speed and velocity.
    11·1 answer
  • South pole
    12·1 answer
  • • How does wind shape Earth’s surface?
    14·1 answer
  • At a pressure 42 kPa, the gas in a cylinder has a volume of 11 liters. Assuming temperature remains the same, if the volume of t
    12·1 answer
  • Please select ALL THAT APPLY
    13·1 answer
  • A bullet of mass 0.010 kg and speed of 200 m/s is brought to rest in a wooden block after penetrating a distance of 0.10 m. The
    8·1 answer
  • What happens to the resistance of two resistors when connected in series​ circuit
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!