Answer:
3.63 hours or 3 and 37.5 minutes
Explanation:
200/55
Hope this helps :)
The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.
pls thank me and brainliest me
Answer:
Weathering, erosion, and deposition from the terrestrial surface topography and soil characteristics. These processes, for example, have formed a variety of landforms in Texas like beaches, plateaus, mountains, and canyons as well as soil types like fertile soil, clay-rich soil, and sandy soil. The combination of topography, soil, and climatic conditions in an area defines the types of habitats that the area can support this is crucial to ecoregion classification. Ten separate ecoregions occur in Texas including 1) East Texas Pineywoods, 2) Gulf Coast Prairies and Marshes, 3) Oak Woods and Prairies, 4) Blackland Prairie, 5) cross timbers and prairies (6) Rolling Plains, (7) High Plains, (8) TransPecos, (9) South Texas Plains, (Brush Country), and (10) Edwards Plateau. Such ecoregions are named for the major types of habitats topographical features (e.g. Edwards Plateau) present in their areas. The weathering, erosion, and deposition of each of these ecoregions have an important influence.
Many firms develop a formal marketing plan to answer the question: who is your target market and how do you plan to reach them. A marketing plan is a comprehensive document which sets out an organization's overall marketing strategy. A marketing plan will include digital media, print media as well as product development strategies. The marketing plan takes the organization's mission statement and turns it into a practical plan. Its goal is to practically implement the reason for the organization's existance.
Answer:
a) Ffr = -0.18 N
b) a= -1.64 m/s2
c) t = 9.2 s
d) x = 68.7 m.
e) W= -12.4 J
f) Pavg = -1.35 W
g) Pinst = -0.72 W
Explanation:
a)
- While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
- This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
- So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

where μk is the kinetic friction coefficient, and Fn is the normal force.
- Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and the weight Fg, downward), we conclude that both must be equal and opposite each other:

- We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

b)
- According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
- In this case, this net force is the friction force which we have already found in a).
- Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
- We can write the expression for a as follows:

c)
- Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

- Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

d)
- From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
- So, we can use the following kinematic equation in order to find the displacement before coming to rest:

- Since the puck comes to a stop, vf =0.
- Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

e)
- The total work done by the friction force on the object , can be obtained in several ways.
- One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
- Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

f)
- By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.

- If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

g)
- The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
- Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:
