Using the normal distribution, it is found that 58.97% of students would be expected to score between 400 and 590.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:

The proportion of students between 400 and 590 is the <u>p-value of Z when X = 590 subtracted by the p-value of Z when X = 400</u>, hence:
X = 590:


Z = 0.76
Z = 0.76 has a p-value of 0.7764.
X = 400:


Z = -0.89
Z = -0.89 has a p-value of 0.1867.
0.7764 - 0.1867 = 0.5897 = 58.97%.
58.97% of students would be expected to score between 400 and 590.
More can be learned about the normal distribution at brainly.com/question/27643290
#SPJ1
Answer: all of them
Step-by-step explanation: im smart
The answer is 2 due to the fact that 2 is even, and can be added more than once.
Using cos addition formula:
use x for theta
cos(x+π/6)=cosx*cos(π/6)-sinx*sin(π/6)
sinx=1/4
cosx=√15/4
cos(π/6)=√3/2
sin(π/6)=1/2
cos(x+π/6)=(√15/4*√3/2)-(1/4*1/2)
cos(x+π/6)=(√45/8)-(1/8 )
cos(x+π/6)=(√45-1)/8)
Answer:
you f yourelf
Step-by-step explanation:
hihhihihih