1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
5

What 3 numbers add up to 288?

Mathematics
1 answer:
Inga [223]3 years ago
3 0
Here you go!
107+57+124=288
You might be interested in
Math ..................
Vaselesa [24]

It can work well here to simplify inside parentheses first.

\displaystyle\left(\frac{4x^{-2}y^{2}}{12x^{-4}y^{-1}}\right)^{3}=\left(\frac{4}{12}x^{(-2-(-4))}y^{(2-(-1))}\right)^{3}\\\\=\left(\frac{x^{2}y^{3}}{3}\right)^{3}=\frac{x^{(2\cdot 3)}y^{(3\cdot 3)}}{3^{3}}\\\\=\frac{x^{6}y^{9}}{27}

_____

The correct selection is not show with your problem statement.

7 0
3 years ago
Read 2 more answers
Determine the number and type of roots for the equation using one of the given roots. Then find each root. (inclusive of imagina
dmitriy555 [2]

Step-by-step explanation:

<em>"Determine the number and type of roots for the equation using one of the given roots. Then find each root. (inclusive of imaginary roots.)"</em>

Given one of the roots, we can use either long division or grouping to factor each cubic equation into a binomial and a quadratic.  I'll use grouping.

Then, we can either factor or use the quadratic equation to find the remaining two roots.

1. x³ − 7x + 6 = 0; 1

x³ − x − 6x + 6 = 0

x (x² − 1) − 6 (x − 1) = 0

x (x + 1) (x − 1) − 6 (x − 1) = 0

(x² + x − 6) (x − 1) = 0

(x + 3) (x − 2) (x − 1) = 0

The remaining two roots are both real: -3 and +2.

2. x³ − 3x² + 25x + 29 = 0; -1

x³ − 3x² + 25x + 29 = 0

x³ − 3x² − 4x + 29x + 29 = 0

x (x² − 3x − 4) + 29 (x + 1) = 0

x (x − 4) (x + 1) + 29 (x + 1) = 0

(x² − 4x + 29) (x + 1) = 0

x = [ 4 ± √(16 − 4(1)(29)) ] / 2

x = (4 ± 10i) / 2

x = 2 ± 5i

The remaining two roots are both imaginary: 2 − 5i and 2 + 5i.

3. x³ − 4x² − 3x + 18 = 0; 3

x³ − 4x² − 3x + 18 = 0

x³ − 4x² + 3x − 6x + 18 = 0

x (x² − 4x + 3) − 6 (x − 3) = 0

x (x − 1)(x − 3) − 6 (x − 3) = 0

(x² − x − 6) (x − 3) = 0

(x − 3) (x + 2) (x − 3) = 0

The remaining two roots are both real: -2 and +3.

<em>"Find all the zeros of the function"</em>

For quadratics, we can factor using either AC method or quadratic formula.  For cubics, we can use the rational root test to check for possible rational roots.

4. f(x) = x² + 4x − 12

0 = (x + 6) (x − 2)

x = -6 or +2

5. f(x) = x³ − 3x² + x + 5

Possible rational roots: ±1/1, ±5/1

f(-1) = 0

-1 is a root, so use grouping to factor.

f(x) = x³ − 3x² − 4x + 5x + 5

f(x) = x (x² − 3x − 4) + 5 (x + 1)

f(x) = x (x − 4) (x + 1) + 5 (x + 1)

f(x) = (x² − 4x + 5) (x + 1)

x = [ 4 ± √(16 − 4(1)(5)) ] / 2

x = (4 ± 2i) / 2

x = 2 ± i

The three roots are x = -1, x = 2 − i, x = 2 + i.

6. f(x) = x³ − 4x² − 7x + 10

Possible rational roots: ±1/1, ±2/1, ±5/1, ±10/1

f(-2) = 0, f(1) = 0, f(5) = 0

The three roots are x = -2, x = 1, and x = 5.

<em>"Write the simplest polynomial function with integral coefficients that has the given zeros."</em>

A polynomial with roots a, b, c, is f(x) = (x − a) (x − b) (x − c).  Remember that imaginary roots come in conjugate pairs.

7. -5, -1, 3, 7

f(x) = (x + 5) (x + 1) (x − 3) (x − 7)

f(x) = (x² + 6x + 5) (x² − 10x + 21)

f(x) = x² (x² − 10x + 21) + 6x (x² − 10x + 21) + 5 (x² − 10x + 21)

f(x) = x⁴ − 10x³ + 21x² + 6x³ − 60x² + 126x + 5x² − 50x + 105

f(x) = x⁴ − 4x³ − 34x² + 76x − 50x + 105

8. 4, 2+3i

If 2 + 3i is a root, then 2 − 3i is also a root.

f(x) = (x − 4) (x − (2+3i)) (x − (2−3i))

f(x) = (x − 4) (x² − (2+3i) x − (2−3i) x + (2+3i)(2−3i))

f(x) = (x − 4) (x² − (2+3i+2−3i) x + (4+9))

f(x) = (x − 4) (x² − 4x + 13)

f(x) = x (x² − 4x + 13) − 4 (x² − 4x + 13)

f(x) = x³ − 4x² + 13x − 4x² + 16x − 52

f(x) = x³ − 8x² + 29x − 52

5 0
3 years ago
The angle of depression from the top of a building to a point
AleksandrR [38]

The distance between point on the ground from the top of the building is 396 meter, if the building is 280 m high and The angle of depression from the top of a building to a point  on the ground is 45 degrees.

Step-by-step explanation:

The given is,

                 The angle of depression from the top of a building to a point  on the ground is 45 degrees.

                 Height of the building is 280 meter.

Step: 1

                 Given diagram is a right angled diagram,

                 For right angle triangle,

                              90° = 45° + 45°    

                                     = 90°  

                 Trignometric ratio,

                            sin ∅ = \frac{Opp}{Hyp}....................(1)

                For the above ratio take the bottom angle, that is angle of depression from the top of a building to a point  on the ground is 45 degrees.

                 Where, Opp side = 280 meters

                               Hyp side = x

                                           ∅ = 45°

                 Equation (1) becomes,

                                  sin 45° = \frac{280}{x}

                          0.70710678 =  \frac{280}{x}

                                            x =  \frac{280}{0.70710678}

                                            x = 395.979

               Distance between point on the ground from the top of the building,  x ≅ 396 meter                                                

                Trignometric ratio,

                                     cos ∅ = \frac{Adj}{Hyp}

                                   Cos 45 = \frac{Adj}{396}

                                         Adj = (0.70710678)(396)

              Bottom length, Adj = 280 meter

Result:

           The distance between point on the ground from the top of the building is 396 meter.

8 0
4 years ago
If |x|+10=1, then what does x equal
Pie

Answer; there is literally no solution. it has to be a negative number.

6 0
3 years ago
Read 2 more answers
7. a hockey arena has 10 920 seats. the first row of seats around the rink has 220 seats. the number of seats in each subsequent
Mazyrski [523]

The number of rows in the arena is 26

<h3>How to determine the number of rows?</h3>

The hockey arena illustrates an arithmetic sequence, and it has the following parameters:

  • First term, a = 220
  • Sum of terms, Sn = 10920
  • Common difference, d = 16

The number of rows (i.e. the number of terms) is calculated using:

S_n = \frac{n}{2}(2a + (n -1) * d)

So,we have:

10920 = \frac{n}{2}(2 * 220 + (n -1) * 16)

Evaluate the terms and factors

21840 = n(440 + 16n -16)

Evaluate the like terms

21840 = n(424+ 16n)

Expand

21840 = 424n + 16n^2

Rewrite as:

16n^2 + 424n - 21840 = 0

Using a graphical tool, we have:

n = 26

Hence, the number of rows in the arena is 26

Read more about arithmetic sequence at:

brainly.com/question/6561461

#SPJ1

4 0
2 years ago
Other questions:
  • What is the gcf of 4a^3 and 9a^4
    5·1 answer
  • What values of data might affect the statistical measures of spread and center
    12·1 answer
  • What is (f - g)(x)?
    13·1 answer
  • Which expression is equalvalant to 6x+8?
    7·2 answers
  • Please answer asap
    9·2 answers
  • Which of the following is a rotation? Select all.
    9·2 answers
  • How would you write one million as a power of 10? Thank you appreciate your help!
    13·2 answers
  • I need help doin this please
    10·1 answer
  • What is the quotient of 20 divided by one fourth
    13·2 answers
  • Can you guys tell me what 6!/3!
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!