Answer:
The probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes <em>n</em> > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

Let <em>p</em> = the proportion of keypads that pass inspection at a cell phone assembly plant.
The probability that a randomly selected cell phone keypad passes the inspection is, <em>p</em> = 0.77.
A random sample of <em>n</em> = 111 keypads is analyzed.
Then the sampling distribution of
is:

Compute the probability that the proportion of passed keypads is between 0.72 and 0.80 as follows:


Thus, the probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Answer:
IT is 41.5 heres the steps
Step-by-step explanation:
first step 21 divided by 2 = 10.5
Then you do 10.5 + 1 = 11.5
then you do 11.5 times 5 = 57.5
Then 2 times 2 times 2 times 2= 16
then 16 - 57.5 = 41.5 is your answer
Answer:
Step-by-step explanation: -13, 9
Answer: y = -14/9(x + 4)^2 + 7
Step-by-step explanation:
The given roots of the quadratic function is (-1, -7)
The vertex is at (-4, 7)
The formula is
y = a(x - h)^2 + k
The vertex is (h, k)
Comparing with the given vertex, (-4, 7), h = -4 and k = 7
Substituting into the formula
y = a(x - h)^2 + k, it becomes
y = a(x - - 4)^2 + 7
y = a(x + 4)^2 + 7
From the roots given (-1, -7)
x = -1 and y = -7
Substituting x = -1 and y = -7 into the equation,
y = a(x + 4)^2 + 7, it becomes
-7 = a(-1+4)^2 + 7
-7 = a(3^2 ) + 7
- 7 = 9a + 7
-7-7 = 9a
9a = -14
a = -14/9
Substituting a = - 14/9 into the equation, it becomes
y = -14/9(x + 4)^2 + 7
Answer:
9.5
Step-by-step explanation: