Cos(A-B) = cosAcosB + sinAsinB
<span>
cos(</span>π/2 - θ) = cos(π/2)cosθ + sin(π/2)sinθ
π/2 = 90°
cos(π/2) = cos90° = 0. sin(π/2) = sin90° = 1
cos(π/2 - θ) = cos(π/2)cosθ + sin(π/2)sin<span>θ
</span>
= 0*cosθ + 1*sin<span>θ = </span>sin<span>θ
Therefore </span>cos(π/2 - θ) = sin<span>θ
QED </span>
4^7=16,384 i used a calulator
Answer:
The statement is true that a function is a relation in which each y value has ONLY 1 x value.
Step-by-step explanation:
The statement is true that a function is a relation in which each y value has ONLY 1 x value.
The reason is very clear that we can not have the repeated x-values (two same x-values).
For example, given the set of the ordered pairs of a relation
{(3, a), (6, b), (6, c)}
As the same x values (x=6) has two different Y values. Hence, the stated relation is not a function.
In order to be a function, a relation must have only 1 x-value for each y-value.
Therefore, the statement is true that a function is a relation in which each y value has ONLY 1 x value.