Answer:

Step-by-step explanation:

17 ÷ 2 = 8.5
8.5 as a mixed number is
.
Let, coordinate of point A' is (x,y).
Since, A' is the symmetric point A(3, 2) with respect to the line 2x + y - 12 = 0.
So, slope of line containing A and A' will be perpendicular to the line 2x + y - 12 = 0 and also their center lies in the line too.
Now, their center is given by :

Also, product of slope will be -1 .( Since, they are parallel )

x = 2y - 1
So, 
Also, C satisfy given line :

Also,

Therefore, the symmetric points is
.
Answer:
yes
Step-by-step explanation:
Answer:
x=35/78
Step-by-step explanation:
3/2x-11/5=(7/8)*(64/49)
3/2x-11/5=8/7
3/2x=8/7+11/5
3/2x=117/35
x=(35*3)/(2*117)
x=35/78
Answer:
4,300
Step-by-step explanation:
Lateral area of a squared Pyramid is given as ½ × Perimeter of base (P) × slant height of pyramid
Thus, we are given,
Side base length (s) = 43 yd
height (h) = 25 yd
Let's find the perimeter
Permimeter = 4(s) = 4(43) = 172 yd
Calculate the slant height using Pythagorean theorem.
Thus, l² = s²+h²
l² = 43²+25² = 1,849+625
l² = 2,474
l = √2,474
l ≈ 50 yd
=>Lateral area = ½ × 172 × 50
= 172 × 25
= 4,300 yd