RTP: [a tan(u) + b]² + [b tan(u) - a]² = (a² + b²) sec²(u)
Proving LHS = RHS:
LHS = [a tan(u) + b]² + [b tan(u) - a]²
= a² tan²(u) + 2ab tan(u) + b² + b² tan²(u) - 2ab tan(u) + a²
= (a² + b²) tan²(u) + (a² + b²)
= (a² + b²)[tan²(u) + 1]
= (a² + b²) sec²(u), using the identity: tan²(x) + 1 = sec²(x)
= RHS
Step-by-step explanation:
1. 2,657
2. 1,921
3. 421
A² + B² = C ÷ 2
CHEZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ!
Yes hbu have to tell me that I’m going on to a nap I just woke me a text from my