Answer:
First one:
Both the mean and median are greater for Plot A than for Plot B
Step-by-step explanation:
Set A:
Mean:
[1×10 + 2×7 + 2×6 + 2×5 + 2×4 + 1×3]/10
= 5.7
Median:
Median position: (10+1)/2 = 5.5th value
(5+6)/2
Median = 5.5
Set B:
Mean:
[1×7 + 3×6 + 3×5 + 2×4 + 1×3]/10
= 5.1
Median:
Median position: (10+1)/2 = 5.5th value
(5+5)/2
Median = 5
Mean: A is greater
Median: A is greater
Answer:
7.) 7
10.) 0
Step-by-step explanation:
When it means "evaluate the function", it's in essence asking us to see what the function spits out when we feed it a certain input. Our inputs are our x values, which spit out a y value.
Evaluating the function when x = 1:
Let's look at where the function has an x value of 1. We see it near the bottom of the table and see the y value associated with the input is 7. So when the function is fed 1 as an input, it spits out 7.
Evaluating the function when f(x) = - 2:
This one is a weird because of the new notation. Just think of it as some value of f, which we don't know (so we represent it as an x-variable) must equal -2. So let's look at our table to find out where our output is -2. We find that when f(x) = -2 the input is 0. So the input which gives -2 is 0.
No it isn’t u have to swap them out. is this right? asap pls hurry
99.2 = 100 + 1/2 (99.2 - 100) / 100 = 10 - 1/2 0.8/10 = 10 - 0.04 = 9.96