Answer:poiujhygtfdoiuytoiuytrewqjhgfdsnbvcnbvnfhhghjgggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhkkkkkkguyumhjmk,l.uogtgbv mjbnh
Step-by-step explanation:
9514 1404 393
Answer:
y = -1/2x + 3
Step-by-step explanation:
It can work to start with the 2-point form of the equation for a line.
y = (y2 -y1)/(x2 -x1)(x -x1) +y1
y = (1 -5)/(4 -(-4))(x -(-4)) +5 . . . . . fill in point values
y = -4/8(x +4) +5 . . . . . . . . simplify a bit
y = -1/2x -2 +5 . . . . . .eliminate parentheses
y = -1/2x +3 . . . . collect terms
Answer:
see explanation
Step-by-step explanation:
x² + 3x + 7 = 5 ( subtract 5 from both sides )
x² + 3x + 2 = 0 ← in standard form
(x + 2)(x + 1) = 0 ← in factored form
Equate each factor to zero and solve for x ( zero product rule )
x + 2 = 0 → x = - 2
x + 1 = 0 ⇒ x = - 1
--------------------------------------------------------------
x² - 2 = - 2x² + 5x ( subtract - 2x² + 5x from both sides )
3x² - 5x - 2 = 0 ← in standard form
(3x + 1)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
3x + 1 = 0 ⇒ 3x = - 1 ⇒ x = - 
x - 2 = 0 ⇒ x = 2
------------------------------------------------------------
(x + 3)² + 4x = 0 ← expand left side using FOIL and simplify
x² + 6x + 9 + 4x = 0
x² + 10x + 9 = 0 ← in standard form
(x + 9)(x + 1) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 9 = 0 ⇒ x = - 9
x + 1 = 0 ⇒ x = - 1
Answer:
w= 9
Step-by-step explanation:

Square both sides:
-4w +61= (w -4)²

Expand:
-4w +61= w² -2(w)(4) +4²
-4w +61= w² -8w +16
Simplify:
w² -8w +16 +4w -61= 0
w² -4w -45= 0
Factorize:
(w -9)(w +5)= 0
w -9= 0 or w +5= 0
w= 9 or w= -5 (reject)
Note:
-5 is rejected since we are only taking the positive value of the square root here. If the negative square root is taken into consideration, then w= -5 would give us -9 on both sides of the equation.
<u>Why </u><u>do </u><u>we </u><u>use </u><u>negative </u><u>square </u><u>root?</u>
When solving an equation such as x²= 4,
we have to consider than squaring any number removes the negative sign i.e., the result of a squared number is always positive.
In the case of x²= 4, x can be 2 or -2. Thus, whenever we introduce a square root, a '±' must be used.
However, back to our question, we did not introduce the square root so we should not consider the negative square root value.
Answer:
I dont know I’m just trynna get points sorry
Step-by-step explanation: