1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
4 years ago
14

For each, list three elements and then show it is a vector space.

Mathematics
1 answer:
Butoxors [25]4 years ago
6 0

Answer:

(a) Three polynomials of degree 1 with real coefficients belong to the set P_1=\{a_0+a_1x\ | a_0, a_1 \in \mathbb{R} \}, then:

2+3x \in P_1

4.5+\sqrt2 x \in P_1

\log5+78x \in P_1

(b) Three polynomials of degree 1 with real coefficients that hold the relation a_0 - 2a_1 = 0 belong to the set P_2=\{a_0+a_1x\ | a_0-2 a_1 =0 \}. The relation between the coefficients is equivalent to a_1 = \frac{a_0}{2}, then:

4+2x \in P_2

13+6.5x \in P_2

10.5+5.25x \in P_2

Step-by-step explanation:

(a) Three polynomials of degree 1 with real coefficients belong to the set P_1=\{a_0+a_1x\ | a_0, a_1 \in \mathbb{R} \}, then:

  • 2+3x \in P_1
  • 4.5+\sqrt2 x \in P_1
  • \log5+78x \in P_1

A vector space is any set whose elements hold the following axioms for any \vec{u}, \vec{v} and \vec{w} and for any scalar a and b:

  1. (\vec{u} + \vec{v} )+\vec{w} = \vec{u} +( \vec{v} +\vec{w})
  2. There is the <em>zero element </em>such that: \vec{0} + \vec{u} = \vec{u} + \vec{0}
  3. For all element \vec{u}of the set, there is an element -\vec{u} such that: -\vec{u} + \vec{u} = \vec{u} + (-\vec{u}) = \vec{0}
  4. \vec{u} + \vec{v} = \vec{v} + \vec{u}
  5. a(b\vec{v}) = (ab)\vec{v}
  6. 1\vec{u} = \vec{u}
  7. a(\vec{u} + \vec{v} ) = a\vec{u} + a\vec{v}
  8. (a+b)\vec{v} = a\vec{v}+b\vec{v}

Let's proof each of them for the first set. For the proof, I will define the polynomials a_0+a_1x, b_0+b_1x and c_0+c_1x and the scalar h and g.

  1. (a_0+a_1x + b_0+b_1x)+c_0+c_1x = a_0+a_1x +( b_0+b_1x+c_0+c_1x)\\(a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x and defining a_0+b_0+c_0 = \alpha_0 and a_1+b_1+c_1 = \alpha_1, we obtain \boxed{\alpha_0+\alpha_1x= \alpha_0+\alpha_1x} which is another polynomial that belongs to P_1
  2. A null polynomial is define as the one with all it coefficient being 0, therefore: \boxed{0 + a_0+a_1x = a_0+a_1x + 0 = a_0+a_1x}
  3. Defining the inverse element in the addition as -a_0-a_1x, then -a_0-a_1x + a_0 + a_1x = a_0+a_1x + (-a_0-a_1x)\\\boxed{(-a_0+a_0)+(-a_1+a_1)x = (a_0-a_0)+(a_1-a_1)x = 0}
  4. (a_0+a_1x) +( b_0+b_1x) =( b_0+b_1x) +( a_0+a_1x)\\(a_0+b_0)+(a_1+b_1)x = (b_0+a_0)+(b_1+a_1)x\\\boxed{(a_0+b_0)+(a_1+b_1)x = (a_0+b_0)+(a_1+b_1)x}
  5. a[b(a_0+a_1x)] = ab (a_0+a_1x)\\a[ba_0+ba_1x] = aba_0+aba_1x\\\boxed{aba_0+aba_1x = aba_0+aba_1x}
  6. \boxed{1 \cdot (a_0+a_1x) = a_0+a_1x}
  7. \boxed{a[(a_0+a_1x)+(b_0+b_1x)] = a(a_0+a_1x) + a(b_0+b_1x)}
  8. (a+b)(a_0+a_1x)=aa_0+aa_1x+ba_0+ab_1x\\\boxed{(a+b)(a_0+a_1x)= a(a_0+a_1x) + b (a_0+a_1x)}

With this, we proof the set P_1 is a vector space with the usual polynomial addition and scalar multiplication operations.

(b) Three polynomials of degree 1 with real coefficients that hold the relation a_0 - 2a_1 = 0 belong to the set P_2=\{a_0+a_1x\ | a_0-2 a_1 =0 \}. The relation between the coefficients is equivalent to a_1 = \frac{a_0}{2}, then:

  • 4+2x \in P_2
  • 13+6.5x \in P_2
  • 10.5+5.25x \in P_2

Let's proof each of axioms for this set. For the proof, I will define again the polynomials a_0+a_1x, b_0+b_1x and c_0+c_1x and the scalar h and g. Again the relation a_1 = \frac{a_0}{2} between the coefficients holds

  1. [(a_0+a_1x) +( b_0+b_1x)]+(c_0+c_1x) = (a_0+a_1x) +[( b_0+b_1x)+(c_0+c_1x)]\\(a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x and considering the coefficient relation and defining a_0+b_0+c_0 = \alpha_0 and a_1+b_1+c_1 = \alpha_1, we have (a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x\\(a_0+b_0+c_0) + \frac{1}{2} (a_0+b_0+c_0)x = (a_0+b_0+c_0) + \frac{1}{2} (a_0+b_0+c_0)x\\\boxed{\alpha_0 + \alpha1x = \alpha_0 + \alpha1x} which is another element of the set since it is a degree one polynomial whose coefficient follow the given relation.

The proof of the other axioms can be done using the same logic as in (a) and checking that the relation between the coefficients is always the same.

You might be interested in
Please help giving brainlest
Likurg_2 [28]

Answer:

8 ft; 6 m; 28pi ft; 10pi mm

Step-by-step explanation:

1. Radius = diameter/2

16/2=8

Therefore, 8 ft

2. Diameter= radius * 2

3*2=6

Therefore, 6 m

3. Circumference = 2*pi*r

2*pi*14=28pi

Therefore, 28pi ft

4. Circumference = pi*d

Therefore, 10pi mm

I hope this helped and have a good rest of your day!

6 0
3 years ago
Read 2 more answers
What is true about angle ABC
abruzzese [7]

Answer:

ab

Step-by-step explanation:

A b and yes it is 1 in a better one day 1

3 0
3 years ago
A^4 + 2b OVER a; if a =3 and b = 12
Tems11 [23]

Answer:

105

Step-by-step explanation:

Given : a = 3, b = 12

3 ⁴ = 81

2 x 12 = 24

Result:

81 + 24

= 105

6 0
3 years ago
Kayla drives 15 miles in 20 minutes. If she drove one hour in total at the same rate,
Rudik [331]

Answer:

45 miles

Step-by-step explanation:

first divide miles/minutes: 15 / 20 = 0.75

then multiply: 0.75 x 60 = 45

3 0
3 years ago
You are assigned 32 math exercises for homework. You complete 87.5% of these before dinner. How many do you have left to do afte
Hunter-Best [27]
You would have 4 left after dinner: (.875)(32)=28 so you have 28 completed before dinner and would have 4 left to do.
7 0
3 years ago
Other questions:
  • To finish an order in time the company had to produce 40 items daily, but it produced 20 items more daily and finished the order
    11·1 answer
  • Omg cholesteral please help me with this one<br> letter choices
    6·1 answer
  • 14=−2c−6−3c what is the value of c?
    8·1 answer
  • if a box of pen given 200 children each will get two points if the number of children is reduced by 10 how many pens would each
    8·1 answer
  • What is the inverse of the function y= x^2-12
    11·1 answer
  • Question 3
    6·1 answer
  • Original price: $72.00<br><br> Markdown: 33% please i rlly need help thanks mate
    12·1 answer
  • PLEASE HELP!! WILL BE GIVING BRAINLIEST TO THE CORRECT ANSWER!!!
    10·1 answer
  • Please help and explain how you got it!!
    10·2 answers
  • WILL GIVE BRAINIEST As a fundraiser the school has a pie eating contest. Matt eats 2.75 pies in 300 seconds. If Matt eats at a c
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!