Answer:
C
Step-by-step explanation:
Given f(x) then f(x + a) is a horizontal translation of f(x)
• If a > 0 then a shift left of a units
• If a < 0 then a shift right of a units
The graph of g(x) is the graph of f(x) shifted 6 units left , then
g(x) = f(x + 6) → C
Answer:
A=152
K= -Ln(0.5)/14
Step-by-step explanation:
You can obtain two equations with the given information:
T(14 minutes) = 114◦C
T(28 minutes)=152◦C
Therefore, you have to replace t=14, T=114 and t=28, T=152 in the given equation:

Applying the following property of exponentials numbers in (II):

Therefore
can be written as 
Replacing (I) in the previous equation:

Solving for k:
Subtracting 190 both sides, dividing by -76:

Applying the base e logarithm both sides:
Ln(0.5)= -14k
Dividing by -14:
k= -Ln(0.5)/14
Replacing k in (I) and solving for A:

Dividing by 0.5
A=152
Take 12 from 24 and if the the answer is 12 then it's a factor.
(1)
Mean length of all fish in the sample - 
<u>Mean</u> = (Sum of observations)/(Number of observations)
= (12 + 5 + 3 + 5 + 8 + 2 + 10 + 9 + 4 + 4)/(10)
= 62/10
=<em> 6.2</em>
(2)
Mean length of adult fish in the sample - 
<u>Mean</u> = (Sum of observations)/(Number of observations)
= (12 + 5 + 8 + 10)/(4)
= 35/4
=<em> 8.75</em>
(3)
Mean length of juvenile fish in the sample - 
<u>Mean</u> = (Sum of observations)/(Number of observations)
= (5 + 3 + 2 + 9 + 4 + 4)/(6)
= 27/6
<em>= 4.5</em>
(4)
Percentage of sample that were adult fish - 
<u>Percentage</u> = (No. of adult fishes)/(Total no. of fishes) × 100
% = (4/10) × 100
<em>% = 40</em>
(5)
Percentage of sample that were juvenile fish - 
<u>Percentage</u> = (No. of juvenile fishes)/(Total no. of fishes) × 100
% = (6/10) × 100
<em>% = </em><em>6</em><em>0</em>
(6)
Percentage of sample that were juveniles over 8 inches long - 
<u>Percentage</u> = (No. of juveniles over 8 inches)/(Total no. of fishes) × 100
% = (1/10) × 100
<em>% = </em><em>1</em><em>0</em>