Answer:
The zeros are 6,-5,9
Step-by-step explanation:
The factored form of the polynomial is given as:

To find the zeros of this function, we set f(x)=0 and solve for x.

This implies that:

We solve for x to get:

The zeros are 6,-5,9
Answer:
I
Step-by-step explanation:
Because independent sample t-tests compare two completely different groups in a sample, which is what the researcher is attempting to do.
The one that has positive 2 as the y intercept
Ok, I'm going to start off saying there is probably an easier way of doing this that's right in front of my face, but I can't see it so I'm going to use Heron's formula, which is A=√[s(s-a)(s-b)(s-c)] where A is the area, s is the semiperimeter (half of the perimeter), and a, b, and c are the side lengths.
Substitute the known values into the formula:
x√10=√{[(x+x+1+2x-1)/2][({x+x+1+2x-1}/2)-x][({x+x+1+2x-1}/2)-(x+1)][({x+x+1+2x-1}/2)-(2x-1)]}
Simplify:
<span>x√10=√{[4x/2][(4x/2)-x][(4x/2)-(x+1)][(4x/2)-(2x-1)]}</span>
<span>x√10=√[2x(2x-x)(2x-x-1)(2x-2x+1)]</span>
<span>x√10=√[2x(x)(x-1)(1)]</span>
<span>x√10=√[2x²(x-1)]</span>
<span>x√10=√(2x³-2x²)</span>
<span>10x²=2x³-2x²</span>
<span>2x³-12x²=0</span>
<span>2x²(x-6)=0</span>
<span>2x²=0 or x-6=0</span>
<span>x=0 or x=6</span>
<span>Therefore, x=6 (you can't have a length of 0).</span>
Noup..
It's false
The number mixed are like ↓↓this one↓↓