NAD serves as the bulk of the oxidative processes in the citric acid cycle's initial electron acceptor.
<h3>What are
electron acceptors in c
itric acid cycle?</h3>
- In the Krebs cycle, which transfers electrons via the electron transport chain with oxygen as the final acceptor, coenzymes like FAD and NAD+ are reduced.
- In a single cycle, three NADH+ and one FADH2 are produced, and when the cycle enters the electron transport chain, 10 ATP is produced.
- The final electron acceptor in the electron transport chain is oxygen. The proton gradient in the intermembrane gap is produced by NADH molecules donating electrons that are then transmitted through a number of different proteins.
<h3>What occurs throughout the citric acid cycle?</h3>
The cycle of citric acid: In the citric acid cycle, a six-carbon citrate molecule is created when an acetyl group from acetyl CoA is joined to a four-carbon oxaloacetate molecule.
Citrate is oxidized over a number of steps, generating two molecules of carbon dioxide for each acetyl group added to the cycle.
learn more about citric acid cycle here
<u>brainly.com/question/14900762</u>
#SPJ4
Einstein’s Theory of Relativity was built on the research and ideas of other scientists. The Theory of Relativity proposes that the speed of light is aconstant. The statement that explains why this is considered to be a scientific theory is that the majority of the scientific community voted on this theory over other possible explanations.
Answer:
B
Explanation:
The general equation for the reaction of a carboxylic acid with an alkanol to form an ester is shown below;
RCOOH + ROH ------> RCOOR + H2O
Hence; the reactant carboxylic acid can only be the compound (CH3)2-CH-CH2-COOH in accordance with the general reaction equation shown above.
Hence the reaction is;
(CH3)2-CH-CH2-COOH + CH3-CH2OH -------> CH3CH2 OCO-CH2-CH-(CH3)2