Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
Hey there!
Solid Sodium and water will react spontaneously and release energy. This is based on the reactivity series. Sodium is a highly reactive metal and hence, it is placed at the top of the reactivity series. This is because it loses its outermost electron very readily. When it comes in contact with water, it reacts with it violently to form sodium hydroxide and hydrogen gas. This reaction is exothermic and hence, accompanied with a release of energy. Gold lies at the bottom of the reactivity series as it is very stable and does not give away its outermost electrons easily. Therefore, when it comes in contact with water, there is no reaction and no release of energy.
I think it's A, <span>an action which causes movement and an opposite reaction</span>
Answer:
el primero es Li, y el segundo es ... oh, está cortado
Explanation:
The given reaction is a combustion reaction, since a hydrocarbon is burning in presence of oxygen