and D. to identify minerals
Q = ?
Cp = 0.397 J/ºC
Δt = 40.3 - 21.0<span> => 19.3</span><span> ºC</span>
m = 15.2 g
Q = m x Cp x Δt
Q = 15.2 x 0.397 x 19.3
Q ≈ 116.46 J
<span>hope this helps! </span>
<span>
Plants and animals are multi-cellular organisms composed of eukaryotic cells, while bacteria are single-cell prokaryotic organisms. Each eukaryotic cell of a plant or animal includes a central nucleus containing DNA and membrane-bound organelles, such as endoplasmic reticulum and mitochondria. A bacterial cell has no nucleus or membrane-bound organelles.
hope it helps! :)
</span>
Conversion factors are useful in solving problems in which a given measurement must be expressed in some other units of measure.
Conversion factors are helpful in solving issues where one unit of measurement needs to be expressed in another. In general, a measurement's numerical value changes when it is multiplied by a conversion factor, while the quantity being measured's real size stays the same.
A conversion factor is a number that is used to multiply or divide one set of units into another. If a conversion is required, it must be done using the correct conversion factor to get an identical value. For instance, 12 inches equals one foot when converting between inches and feet.
To learn more about Conversion factors please visit -brainly.com/question/23510660
#SPJ1
<u>Answer:</u> The
for the reaction is 54.6 kJ/mol
<u>Explanation:</u>
For the given balanced chemical equation:

We are given:

- To calculate
for the reaction, we use the equation:
![\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28reactant%29%5D)
For the given equation:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28COCl_2%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CCl_4%29%7D%29%5D)
Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-204.9%29%29-%28%281%5Ctimes%20%28-394.4%29%29%2B%281%5Ctimes%20%28-62.3%29%29%29%5D%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D46.9kJ%3D46900J)
Conversion factor used = 1 kJ = 1000 J
- The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

- To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 46900 J
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 22.92
Putting values in above equation, we get:

Hence, the
for the reaction is 54.6 kJ/mol